
ELLIPTIC FUNCTIONS AND PLANE CUBICS

HUNG LE

Abstract. In this paper, I explore elliptic functions, the Weierstrass ℘ func-

tion and the addition structure on plane cubics.
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1. Elliptic functions

1.1. The elliptic in elliptic functions. The starting point of our journey is with
mathematicians trying to find a formula for the arc length of an ellipse. As contrast
to its brother, the circle, it seems quite difficult to find the arc length of an ellipse.
For example, on a circle of unit radius, the arc length, measured in the angle from
the x-axis, is quite trivially

uc(φ) =

ˆ φ

0

1dθ = φ,

but to represent it in the y-coordinate, we can perform the change of variable
y = sinφ, t = sin θ to get

uc(y) =

ˆ y

0

1√
1− t2

dt = φ = arcsin y

which has inverse sin, and note that sin is 2π-periodic.

On the other hand, the same approach when applied onto the “unit” ellipse

x2 +
y2

b2
= 1, b > 1, m := 1− 1

b2
> 0
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takes us to the following integral, where r(θ) is the “radius” at angle θ

ue(φ) =

ˆ φ

0

r(θ)dθ

=

ˆ φ

0

1√
1−

(
1− 1

b2

)
sin2 θ

dθ

=

ˆ φ

0

1√
1−m sin2 θ

dθ,

then again with the change of variable y = sinφ, t = sin θ we get

ue(y) =

ˆ y

0

1√
1−mt2

1√
1− t2

dt,

which has inverse sn, the Jacobi sine function. As it turns out, similar to sin, sn
also has a periodic nature, but now it is doubly periodic: it is 4K- and 2K ′i-periodic
where K,K ′ ∈ R. We won’t delve too much into this, but the point is that the
study of elliptic functions had its origins in investigating inverses of elliptic integrals,
where Fagnano, Euler, Legendre, Abel, Jacobi and others ventured to find addition
theorems with a similar flavor to first, for example on the circle, knowing that

uc(α) + uc(β) = uc(α+ β),

and then reverting to asking about the inverses, yielding

sin(α+ β) = sinα

√
1− sin2 β + sinβ

√
1− sin2 α.

1.2. In the complex analysis setting. We are interested in the doubly periodic
functions, with more flexible periodicity than just along purely real/imaginary off-
sets like sn. To do so, let’s take a step back to investigate periodicity in general on
C. f is ω-periodic for some ω ∈ C if f(z) = f(z+ω) for all z ∈ C. Then for a given
f , it is easy to see that the set of ω satisfying this property forms a subgroup in
C. They have to be discrete, because otherwise by identity theorem, f has to be
constant. However, it might be surprising that there are not that many non-trivial
types of such G, only 2.

Proposition 1.1. There are only 2 types of discrete subgroup G ̸= {0} of C. Either
G = Zw for some ω ̸= 0, or G = {mω1 + nω2 : m,n ∈ Z} for some ω1, ω2 ∈ C
linearly independent over R.

Proof. Choose ω1 ∈ G\{0} with minimal absolute value. This minimum is achieved
because G is a discrete additive group. Since G is an additive group, it follows that
Zω1 ⊆ G too.

If G = Zω1 then we’re done. If not, i.e. G \ Zω1 ̸= ∅, again pick ω2 ∈ G \ Zω1

with minimal absolute value within G \ Zω1, so Zω2 ⊆ G, but G is additive so
{mω1 + nω2 : m,n ∈ Z} ⊆ G. Suppose for contradiction that there exists some
ω3 ∈ G \ {mω1 + nω2 : m,n ∈ Z}.
Observe that G ∩ Rω1 = Zω1, because if there exists some α ∈ R \ Z such that
αω1 ∈ G then (α − ⌊α⌋)ω1 ∈ G too; but |(α − ⌊α⌋)ω1| < |ω1|, a contradiction
to that |ω1| was minimal. It then follows that ω2 ̸∈ Rω1, so ω1, ω2 are R-linearly
independent, which means they span C ∼= R2, so we can represent

ω3 = αω1 + βω2
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for some α, β ∈ R. WLOG, |α|, |β| ≤ 1
2 (one can add/subtract appropriate amounts

of ω1 and ω2), but then

|ω3| = |αω1 + βω2|
< |α||ω1|+ |β||ω2|

≤ 1

2
(|ω1|+ |ω2|) ,

where the strict inequality is from that ω1, ω2 are R-linearly independent. But the
minimality of ω1 and ω2 implies that

|ω3| ≥ |ω1|, |ω2| ⇒ |ω1| > |ω2|, |ω2| > |ω1|,

which is a contradiction. □

1.3. Definition and properties of elliptic functions. As motivated by Sec-
tion 1.1, we are particularly interested in periodic structure of the second type, i.e.,
doubly periodic. The functions that satisfy such a periodic structure, with some
analytic requirement, are called, aptly, elliptic functions. Let us first recall what a
meromorphic function f on C is.

Definition 1.2. A function f : G → Ĉ on a domain G ⊂ C is meromorphic if

(1) The set Pf = {z ∈ G : f(z) = ∞} is discrete in G.

(2) The restriction f |G\Pf
: G \ Pf → C is holomorphic.

Definition 1.3. A lattice Ω in C is

Ω = {mω1 + nω2 : m,n ∈ Z}

where ω1, ω2 ∈ C are R-linearly independent.

Definition 1.4. An elliptic function with respect to the lattice Ω is a meromorphic
function f on C with

f(z + ω) ≡ f(z) for all z ∈ C, ω ∈ Ω.

The overall structure of elliptic functions with respect to a fixed Ω is quite straight-
forward; one can add, subtract, multiply and divide them point-wise.

Definition 1.5. The set F , when associated with the binary operations addition
and multiplication +,× : F × F → F is a field if both operations are associative
and commutative, there exists additive and multiplicative inverses and identities,
and multiplication is distributed over addition.

Proposition 1.6. The elliptic functions with respect to lattice Ω constitute a field
K(Ω). Moreover, if f ∈ K(Ω) then f ′ ∈ K(Ω).

Proof. It is clear that the set of elliptic functions K(Ω) satisfy the field conditions
with point-wise operations while maintaining the periodicity condition. A particu-
lar note, though, is with regards to taking multiplicative inverses, which one might
run into the trouble of dividing by 0 if one deals with holomorphic functions exclu-
sively, but in this case elliptic functions are meromorphic, so the operation is still
well-defined.
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Furthermore, if f ∈ K(Ω) then for any z ∈ C, ω ∈ Ω,

f ′(z + ω) = lim
h→0

f(z + ω + h)− f(z + ω)

h

= lim
h→0

f(z + h)− f(z)

h
= f ′(z)

so f ′ ∈ K(Ω) too. □

So we have that all elliptic functions with respect to a fixed Ω form a field, let’s
investigate a specific one. Take a particular f ∈ K(Ω). The periodic structure of
f allows us to just look at a small portion of C to determine its global character.
Since ω1 and ω2 do not lie on a straight line through 0, they span a half-open
parallelogram

P (ω1, ω2) = {z = t1ω1 + t2ω2 : 0 ≤ t1, t2 < 1}.

Then for all z ∈ C, there exists some ω ∈ Ω such that (z − ω) ∈ P and f(z) =
f((z − ω) + ω) = f(z − ω). So the values that f takes in C are entirely decided
on P ! So it shouldn’t be surprising that Liouville’s theorem works well here, if f is
holomorphic, given how “small” P is.

Proposition 1.7. If f is elliptic and holomorphic, then it is constant.

Proof. The range of f is
f(C) = f(P ) ⊆ f(P )

but f(P ) is the continuous image of a compact so is bounded, so f is bounded.
Liouville’s theorem then implies that f must be constant. □

So the interesting ones (that we’re going to look at) have poles. From now on, we
implicitly assume that f is non-constant (has poles) and is elliptic with respect to
lattice Ω = ⟨ω1, ω2⟩ with Im(ω2/ω1) > 0:

Figure 1. The lattice Ω and period parallelogram P . [1, page 175]

Remark 1.8. It has been seen that any value assumed by f is assumed in P , but
that is also true for any a+P := {a+ z : z ∈ P} with some a ∈ C, i.e., a translated
version of P , with the same reasoning.

Proposition 1.9. The number of poles of f in P is finite.
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Proof. Suppose not, then there exists a sequence of poles (zn) in P ⊆ P . P is
compact so there exists a convergent subsequence of poles; but we know that the
set of poles must be discrete. ⇒⇐ □

Proposition 1.10. Let f be elliptic with poles z1, . . . , zn in P . Then
n∑

ν=1

reszνf = 0

Proof. WLOG, ∂P has no poles. If there are poles on ∂P , consider a + P with
small a instead. This consideration is valid since there are only finitely many poles.

Then intP is a domain with boundary ∂P = [0, ω1]+ [ω1, ω1+ω2]+ [ω1+ω2, ω2]+
[ω2, 0], i.e., the directed perimeter of P . We can then apply residue theorem on
intP to get

2πi

n∑
ν=1

reszνf =

ˆ
∂P

f(z)dz

=

ˆ
[0,ω1]−[ω2,ω2+ω1]

f(z)dz +

ˆ
[ω1,ω1+ω2]−[0,ω2]

f(z)dz

= 0

(1.11)

since f is ω1- and ω2-periodic. □

Corollary 1.12. f has at least 2 poles in P , counting multiplicity.

Proof. Suppose not, that f has 1 simple pole z1 in P , but that would make

0 = resz1f ̸= 0

since z1 is a simple pole. □

An interesting interplay of the closed-under-differentiation property of K(Ω) with
the argument principle yields us the following result, that gives some impression of
(admittedly not that relevant) Casorati-Weierstrass/Little Picard/Big Picard.

Proposition 1.13. f assumes every w ∈ Ĉ equally often.

Proof. Fix w ∈ Ĉ. From the argument principle we know that for some domain G
with positive boundary such that f ̸= w,∞ on ∂G, we have that

(1.14)
1

2πi

ˆ
∂G

f ′(z)

f(z)− w
= N(w)−N(∞)

where N(w) = #{z ∈ G : f(z) = w} and correspondingly for N(∞). It remains
for us to choose a smart G — we just have to choose G = a+ P (possibly P ) such

that f doesn’t attain w,∞ on ∂(a + P ). But f ∈ K(Ω) so f ′

f−w ∈ K(Ω), then a

similar computation as (1.11) yields that LHS = 0, so N(ω) = N(∞), which is just
the number of poles of f in a+ P , i.e., in P .

Therefore in P , f assumes every w ∈ Ĉ equally often, in particular, equally number-
of-poles often. □

This number is obviously essential to f , so we assign that as its order, just like how
we assign some degree to polynomials and rational functions.
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Definition 1.15. The order of f ∈ K(Ω) is the number of poles it has in P .

We’ve therefore said something about the number of inputs that gives f a fixed
value, but we can also say something directly about the value of those inputs as
well, in particular, for zeros and poles.

Proposition 1.16. Let {aµ}µ∈[k] be zeros with corresponding multiplicities {mµ},
and {bν}ν∈[l] be poles with multiplicities {nν} then

k∑
µ=1

mµaµ −
l∑

ν=1

nνbν ∈ Ω

Proof. The overview of this proof is that we want to say something about the value
of the zeros and poles (aµ, bν) and their corresponding multiplicities, so we can’t

simply use something of the form f ′

f again, to then only get the multiplicity. It’s

here that we are inclined to also multiply by z so that we get aµ, bν as well. In view
of this, we can define

(1.17) g(z) = z
f ′(z)

f(z)
.

Again, WLOG, aµ, bν ̸∈ ∂P . Then by residue theorem, we get that

1

2πi

ˆ
∂P

g(z)dz =

k∑
µ=1

resaµg +

l∑
ν=1

resbνg

We can then compute the residues for g, since z is holomorphic in P , we get that

resaµ
g = (z |aµ

)resaµ

(
f ′

f

)
= aµmµ

and

resbνg = (z |bν )resbν
(
f ′

f

)
= −bνnν

so (1.17) implies

(1.18)

k∑
µ=1

mµaµ −
l∑

ν=1

nνbν =
1

2πi

ˆ
∂P

g(z)dz,

and our strategy to include z in g(z) has paid off. It remains for us to show that
RHS ∈ Ω.

Consider the opposite sides [0, ω1] and [ω1 + ω2, ω2], which are offset by ω2 in
opposite directions. Then we have

g(z)− g(z + ω2) =
zf ′(z)

f(z)
− (z + ω2)f

′(z + ω2)

f(z + ω2)

= −ω2
f ′(z)

f(z)
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so ˆ
[0,ω1]+[ω1+ω2,ω2]

g(z)dz = −
ˆ
[0,ω1]

ω2
f ′(z)

f(z)

= −ω2

ˆ
[0,ω1]

f ′(z)

f(z)

= −ω2

ˆ
γ

1

ζ
dζ

⇒ 1

2πi

ˆ
[0,ω1]+[ω1+ω2,ω2]

g(z)dz = ω2wn(γ, 0) ∈ Zω2

where γ is a closed curve “from” 1
f(0) “to” 1

f(ω1)
= 1

f(0) . Similarly, we have that

1

2πi

ˆ
[ω1,ω1+ω2]+[ω2,0]

g(z)dz ∈ Zω1

so it follows from (1.18) that

k∑
µ=1

mµaµ −
l∑

ν=1

nνbν =
1

2πi

ˆ
∂P

g(z)dz ∈ Zω1 + 2πiZω2 = Ω.

□

2. The construction of elliptic functions

2.1. The bottom-up approach. We’ve discussed long and hard on properties of
elliptic functions — let’s construct some. Our approach for this section will be
bottom-up, i.e., we try to build functions that are elliptic “out of the box”. The
most obvious candidate would be something of the form f(z) =

∑
ω∈Ω F (z − ω),

which iterates through the entire lattice space to ensure periodicity of f with some
F :

f(z + ω) =
∑
ω∈Ω

F ((z + ω)− ω) =
∑
ω∈Ω

F (z) =
∑
ω∈Ω

F (z − ω) = f(z).

We’re looking for a nice enough — meromorphic in particular — f , so either
F (z) = zk or z−k come to mind; but if F (z) = zk then f(z) =

∑
ω∈Ω(z − ω)k

(if defined/converges at all) would just be holomorphic and thus constant. There-
fore the next natural choice would be to use (z − ω)−k, for k ≥ 2 since f has at
least 2 poles (counting multiplicity) in P .

Proposition 2.1. For k ∈ N, define

(2.2) fk(z) =
∑
ω∈Ω

1

(z − ω)k
,

then for k ≥ 3, the series converge locally absolutely uniformly.

The proof of which depends on

Proposition 2.3. The series
∑

ω∈Ω\{0} ω
−k converges absolutely iff k > 2.

Proof. (of Proposition 2.3) Essentially, we want to show that the quick (k > 2)
rate of decay of ω enables the sum when taken over the entire lattice to converge
absolutely, but k ≤ 2 is not going to be quick enough.
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For l ∈ N, denote Pl as the parallelogram with vertices ±lω1 ± lω2. Then ∂Pl has
8l lattice points, and each lattice point mω1 + nω2 lies on ∂Pmax(m,n). Then if we
denote δ = dist(∂P1, 0) > 0, then dist(∂Pl, 0) = lδ by scaling.

Figure 2. ∂P1 in red, ∂P2 in blue, and δ in green.

It then follows that∑
ω∈Ω\{0}

|ω|−k ≤
∞∑
l=1

8l(lδ)−k = 8δ−k
∞∑
l=1

1

lk−1
< ∞

for k > 2.

On the other hand, when k ≤ 2, we can make the same estimation with δ = sup{|z| :
z ∈ ∂P1} > 0, then∑

w∈Ω\{0}

|ω|−k ≥
∞∑
l=1

8l(lδ)−k = 8δ−k
∞∑
l=1

1

lk−1
= ∞

as required. □

Proof. (of Proposition 2.1) For each |z| ≤ R, use the triangle inequality to lower

bound |z−ω| ≥ |ω|
2 all for sufficiently large |ω|, hence upper bounding the |z−ω|−k

series with |ω|−k. See [1, page 178]. □

We said that our building blocks start with k ≥ 2, but the proposition shows that
fk converges when k ≥ 3. What happens when k = 2? Well, f2 doesn’t converge so
we are unable to construct an elliptic function of order 2 with our current building
blocks. However, we can construct one by integrating f3 (bringing the powers from
−3 to −2) along a path from 0 to z to yield a primitive. However, before we can
do this, there are several things to check.

We can first leave aside z−3, since this term is well-understood and its primitive
on C \ Ω is −1

2 z−2. Then for the rest,
∑

ω∈Ω\{0}(z − ω)−3 is holomorphic on

C \ Ω ∪ {0} with zero residues on ω ∈ Ω \ {0} (around a fixed ω′, the expansion is
(z−ω′)−3 +

∑
ω∈Ω\{0,ω′}(z−ω)−3 so the coefficient of z−1 is 0, so residue is zero).

It then follows that for any closed curve γ in C\Ω∪{0}, the residue theorem yields
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that the integral over γ is 0. Using this fact, the integral from a fixed point 0 to z
is unambiguous and is indeed a primitive. Then we have that, for ω ∈ Ω \ {0},ˆ z

0

(ζ − ω)−3dζ =
−1

2

[
(ζ − ω)−2

]z
0

=
−1

2
((z − ω)−2 − ω−2)

so we can write, combining with the term when ω = 0,

g(z) =
−1

2

 1

z2
+

∑
ω∈Ω\{0}

(
1

(z − ω)2
− 1

ω2

)
is a primitive of f3 on C \ Ω.
Directly, g is meromorphic on C, with the lattice points of Ω as its poles of order 2
and looks somewhat periodic, but it would be mistaken to immediately admit that
g ∈ K(Ω). After all, we previously mentioned that K(Ω) is closed under taking
differentiation, but is not guaranteed to be so under integration,. What we do know
is that from the periodicity of f3, for all ω ∈ Ω, we get

g′(z + ω)− g′(z) ≡ 0,

so g(z + ω)− g(z) ≡ C(ω) ∈ C, some constant dependent on ω.

Notice that g is an even function, so for j = 1, 2, we have

C(ωj) = g(ωj/2)− g(−ωj/2) = 0

so C(ωj) = 0. This implies C(ω) = 0 for all ω ∈ Ω, simply because, say, for
ω = mω1 + nω2 with m > 0,

C(mω1 + nω2) = g(z +mω1 + nω2)− g(z)

= g(z +mω1 + nω2)− g(z + (m− 1)ω1 + nω2)

+ g(z + (m− 1)ω1 + nω2)− g(z)

= C(ω1) + C((m− 1)ω1 + nω2)

and so on. In other words, we get that for all ω ∈ Ω,

g(z + w)− g(z) ≡ 0,

so indeed g is elliptic with respect to Ω. This g is special in ways that will be shown
in later sections; so special that, it (up to removing an ugly constant) takes the
name of a special mathematician, Karl Weierstrass (1815–1897).

Definition 2.4. The Weierstrass ℘-function of the lattice Ω is

(2.5) ℘(z) =
1

z2
+

∑
ω∈Ω\{0}

(
1

(z − ω)2
− 1

ω2

)
.

By construction, ℘ is an even, elliptic function of order 2 with double poles at
lattice points. Its derivative, which is essentially a rescaled f3, is

℘′(z) = −2
∑
ω∈Ω

(z − w)−3,

which is an odd, elliptic function of order 3 with triple poles at lattice points, also
by construction.
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It is said that ℘ is the simplest elliptic function in some sense — in what sense?
Well, in the order sense. ℘ achieves the minimum possible order for an elliptic
function. Its derivative ℘′, having order 3, is next on the line. One might already
expect that these 2 basic blocks can build up to all other elliptic functions. And
that is true, with their even-odd dynamic.

Theorem 2.6. (1) Every even elliptic function f is a rational function of ℘.

(2) Every odd elliptic function g can be written as g = ℘′R(℘) where R(℘) is a
rational function of ℘.

Lemma 2.7. Let f1 be an even elliptic function with poles (if any) in the lattice
points. Then f1 is a polynomial in ℘:

f1 = a0 + a1℘+ · · ·+ an℘
n

with aµ ∈ C.

Proof. (of Lemma 2.7) The idea of the proof is quite simple. We try to compose f
using powers of ℘ from the most negative power of z onwards.

If f is constant then we’re done. If not, consider the Laurent expansion of f about
the lattice point 0. Since f is even, there are only even powers of z:

f(z) = b−2nz
−2n + · · · , b−2n ̸= 0

In particular, from the expansion, f is elliptic of order −2n. The Laurent expansion
of ℘ around 0 is (from (2.5)) z−2 + . . . , so

f1(z) = f(z)− b−2n(℘(z))
n

would be an even, elliptic function of order −(2n − 2), also with poles in at most
the lattice points. Performing induction in the order of elliptic f would yield the
end of the proof. □

Proof. (of Theorem 2.6) (1) Given an even and elliptic f . Suppose that f has poles
z1, . . . , zn in P \Ω = P \{0}. Let us then try to “remove” these poles, just like how
we can make a singularity z0 of a meromorphic function removable by multiplying
by some (z − z0)

k term.

Then for every j ∈ [n], [℘(z)− ℘(zj)] |z=zj= 0, so there exists some mj ∈ N, at
most the order of the pole zj (to be exact, it is the ceiling of the quotient of the order
of pole zj to the order of zj as a zero in ℘(z)−℘(zj)), such that (℘(z)−℘(zj))

mjf(z)
has a removable singularity at zj . Perform the same procedure for all other poles
in P \ {0}, we get that

f1(z) =

k∏
j=1

(℘(z)− ℘(zj))
mjf(z)

has no poles in P \ {0}, but can very well have a pole at 0. However, applying
Lemma 2.7 yields that f1 is some polynomial in ℘, so it follows that

f(z) =
f1(z)∏k

j=1(℘(z)− ℘(zj))mj

is a rational function of ℘ (since ℘(zj) are just numbers).

(2) Apply (1) to g
℘′ , it is even and elliptic. □
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So this is a super interesting phenomenon, that ℘ and ℘′ generate the entire field
of K(Ω), since every function can be decomposed into even and odd parts. In fact,
one can glean even more insight on the ℘ function by applying the crucial inductive
procedure in Lemma 2.7 on the even elliptic function (℘′)2 to get an expression
between ℘ and its derivative as follows.

Proposition 2.8. ℘ satisfies the differential equation

(2.9) ℘′2 = 4℘3 − g2℘− g3,

where
g2 = g2(Ω) = 60

∑
ω∈Ω\{0}

ω−4, g3 = g3(Ω) = 140
∑

ω∈Ω\{0}

ω−6.

Proof. See [1, page 181] □

2.2. The top-down approach. One now begs the question if instead, we are not
allowed to construct just any elliptic function (with respect to Ω) and have to con-
struct one that has prescribed zeros and poles (with corresponding multiplicities) on
P . Can we do it? It turns out that the answer is yes, and the overarching idea is to
show that it is sufficient for a function to satisfy the properties in Proposition 1.13
and Proposition 1.16, and then construct a particular (luckily, not-too-unnatural)
function that does so. See [1, page 183].

3. Addition on plane cubics from elliptic functions

Let us switch gears a little bit; this section will aim to illuminate an addition
structure that exists on plane cubics, using the differential equation that we’ve
demonstrated for ℘ in Proposition 2.8. As before, fix a lattice Ω in C. Then the
corresponding ℘ and ℘′ only have poles at the Ω lattice points, so is holomorphic
on C \ Ω. It follows that the map

φ : C \ Ω → C2

z 7→ (℘(z), ℘′(z))

is also holomorphic. The link that connects elliptic functions to plane cubics is the
differential equation (2.9), so the image of φ is contained in

(3.1) E = {(u, v) ∈ C2 : v2 = 4u3 − g2u− g3}
where g2 = g2(Ω), g3 = g3(Ω); the equation v2 = 4u3 − g2u − g3 is said to be in
Weierstrass normal form. In fact φ is onto E, since ℘ is onto C (Proposition 1.13),
and then we can match the first coordinate accordingly.

To do addition on E, we want to use the addition structure in C and then transfer
it through φ over to E, but for now φ is only defined on C \Ω. Therefore we’d like
to extend it to all of C, specifically to map Ω to something. The formula of ℘ and
℘′ suggests that we map to something like “infinity” — which is why we are going
to embed C2 into the complex projective plane P2(C).

Definition 3.2. P2(C) = (C3 \ {0})/∼ where the equivalence relation on the RHS
is x ∼ y if one is a C∗-multiple of the other. As a side note, geometrically, the
complex projective plane P2(C) extends the notions of points and lines, so that
there is a unique point that every 2 distinct lines intersect at, and there is a unique
line that every 2 distinct points lie on.
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We identify each point of P2(C) with [w0 : w1 : w2], which capture the equivalence
class and are called homogenous coordinates since [w0 : w1 : w2] = [λw0 : λw1 : λw2]
for λ ̸= 0. The natural embedding of (u, v) ∈ C2 into P2(C) would then be [1 : u : v],
while the line at infinity that goes through all the points at infinity is {[0 : · : ·]}.
The form of the equation on E is, then, in homogeneous coordinates:(

w2

w0

)2

= 4

(
w1

w0

)3

− g2

(
w1

w0

)
− g3

⇒ w0w
2
2 = 4w3

1 − g2w1w
2
0 − g3w

3
0,

so now we can find which “point at infinity” also satisfy this requirement. Plugging
in w0 = 0, we get that w1 = 0, so the only other point in P2(C) that satisfies this
requirement is

P0 = [0 : 0 : 1],

since [0 : 0 : 0] ̸∈ P2(C). This point will enable us to extend φ to C, by mapping Ω
to this new point!

Denote E = E ∪ {P0} where E is already embedded into P2(C), then we can
officially extend φ:

φ : C \ Ω → E

Ω → P0.

Here is the crucial part. Due to its construction, φ inherits the periodic property
of ℘ and ℘′. In particular,

Proposition 3.3.

φ(z1) = φ(z2) ⇔ z1 − z2 ∈ Ω.

Proof. φ(z1) = φ(z2) ⇒ ℘(z1) = ℘(z2) which implies either z1−z2 ∈ Ω or z1+z2 ∈
Ω. If z1 + z2 ∈ Ω then ℘′(z1) = ℘′(z2) = −℘′(z1) since ℘ is odd, so ℘′(z1) =
℘′(z2) = 0 = ℘(−z2), so z1 − z2 ∈ Ω by Proposition 1.16. □

It then follows that φ induces a bijection between the quotient group C/Ω and E
(each equivalence class C/Ω (within each class, numbers differ by some ω ∈ Ω) is
assigned to a particular member of E); this is where the addition structure can
be transferred over, as a group homomorphism of sort (a priori, E doesn’t have an
additive structure, but we’re endowing it with one). Given A,B ∈ E, then one can
define

A+B := φ(φ−1(A) + φ−1(B)).

So far this seems quite artificial, but we will arrive at a nice geometric interpretation
of this addition structure later on. To find what this seemingly artifical addition
looks like, let us first consider the case when φ−1(A), φ−1(B) and φ−1(A)+φ−1(B)
are not on Ω.

Proposition 3.4. Let z1, z2, z3 = z1 + z2 ̸∈ Ω. Let

A = (p1, p
′
1) := φ(z1), B = (p2, p

′
2) := φ(z2), C

′ = (p3,−p′3) := (℘(z3),−℘′(z3))

then A,B,C ′ are the intersection points of E with the unique line L = {(u, v) : v =
au+ b} that goes through A,B.
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Proof. WLOG, let z1, z2 ∈ P . Then consider

f(z) = ℘′(z)− a℘(z)− b,

with a, b chosen such that f(z1) = f(z2) = 0:

a =
p′1 − p′2
p1 − p2

, b = p′1 − ap1,

then f is elliptic of order 3. This looks complicated, but if we take a closer look at
f and what it means for f to be zero, we see that on C2, the a and b constants are
chosen such that φ(z1), φ(z2) lie on the line L1 = {(u, v) : v = au+ b}, i.e., L1 goes
through A and B.

Back to f , then f = ℘′ − a℘ − b is of order 3 and has 2 zeros so far. Therefore,
by Proposition 1.13 and Proposition 1.16, there exists a third zero z′3 ∈ P and
z1 + z2 + z′3 ∈ Ω, i.e.

f(z′3) = 0 ⇒ f(z′3 − (z1 + z2 + z3)) = 0 ⇒ f(−z3) = 0,

so
℘′(−z3) = a℘(−z3) + b

but ℘′ is odd and ℘ is even so

−℘′(z3) = a℘(z3) + b ⇒ −p′3 = ap3 + b.

In summary, we have 
p′1 = ap1 + b

p′2 = ap2 + b

−p′3 = ap3 + b

so indeed A,B,C ′ ∈ L1. □

Remark 3.5. If p1 = p2, i.e., A = B, the same proposition holds with

a =
12p21 − g2

2p′1
, b = p′1 − ap1.

Proposition 3.6. From Proposition 3.4 and Remark 3.5, we can now describe the
geometric interpretation of the addition

A+B = φ(φ−1(A) + φ−1(B)).

in 2 steps:

(1) Given A = (p1, p
′
1), B = (p2, p

′
2) ∈ E, draw the unique line L1 that goes

through them. L1 −•−A,B; and L1 ∩ E at C ′ = (p3,−p′3).

(2) “Take the negative” of the second coordinate to get (p3, p
′
3) from (p3,−p′3),

but what this means more generally in the geometric world is to take a
detour to P2(C), then C is simply the intersection of the line L2 : w1 = p3w0

(vertical line in planar world) that goes through P0 and C ′ with E. In short,
draw L2 −•− P0, C

′; and L2 ∩ E at C = A+B.

Remark 3.7. A complex line in P2(C) intersects E in 3 points, counting multiplic-
ity, so a simple point of tangency is counted twice, and an inflexion point thrice.
As in the procudure above, P0, C

′, C are the 3 points that L2 intersects with E.
This plays into our “line-taking” procedure, where for example, if A = B, the line
L1 that we need to take would be the line tangential to E at A = B.
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Remark 3.8. We have only done the analytic work for A,B,A + B ̸= P0, but in
the step procedure above we’ve also included P0 as a viable choice for A or B (in
E), because this geometric interpretation can be extended to all of E.

Visually, we can refer to the figure below.

Figure 3. Addition on plane cubic. [1, page 191]

The figure illustrates 2 cases. For the sake of illustration, let us re-narrate the
procedure in the context of the figure. For P1+Q1, take the line that goes through
them, this is L1, then R′

1 ∈ L∩E is the point of intersection. Then the line L2 to P0

is simply the vertical line to “infinity”, and we get R1 ∈ L1∩E at the bottom-right
is P1 +Q1. For P2 +Q2, since P2 = Q2, L1 is the tangential line to E, and we get
R′

2 ∈ L1 ∩ E. Draw a similar L2 to the case before, and we get R2 = P2 +Q2.

We’ve therefore endowed E with an addition structure, and making it an Abelian
group with P0 as its identity element (one can easily check, simply through the
procedure). This is always possible, when the discriminant of the plane cubic E,
∆ = g32−27g23 ̸= 0, i.e., E is non-singular. Simply put, the discriminant of the plane
cubic is similar to the discriminant of a quadratic, in that it signifies information
about the roots of the cubic.

As we conclude, notice that the geometric description that we give to addition on
E relieves its parametrization of φ : z 7→ (℘(z), ℘′(z)), as well as its addition as
corresponding to A + B = φ(φ−1(A) + φ−1(B)); it is purely geometrical. As it
turns out, any P0 ∈ E, not just [0 : 0 : 1], would suffice as the additive identity.
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Figure 4. Arbitrary P0. [1, page 192]

The above figure demonstrates our last remark, where P0 is simply chosen as a
point on E itself, and the procedure to get R′ through L1 is the same, while getting
R is slightly different: it is no longer drawing the vertical line L2 through ∞, but
it is still drawing through P0, and we get R at the bottom-left corner.
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