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Lecture 1: Revision of the entire thing

Lecture 1

Revision of the entire thing

10 Dec 2024

Definition 1.1 (Cyclic structure). The cyclic structure of a permutation σ ∈ Sn is

C(σ) = 1m12m2 . . . nmn

where mi is the number of cycles of length i in the cycle decomposition of σ.

Definition 1.2 (Conjugate). x, y ∈ G are conjugate iff there exists g ∈ G such that y = gxg−1. This is
an equivalence relation, and the equivalence classes are called conjugacy classes.

Definition 1.3 (Inversion and Sign). An inversion of σ ∈ Sn is (i, j) such that i < j, σ(i) > σ(j).sign :
Sn → {±1} is a homomorphism. sign(σ) = 1 iff the number of inversions is even.

Definition 1.4 (Group generators). G is generated by S = {gα : α ∈ I} if for all g ∈ G,

g = gα1 . . . gαn

for gαi
∈ S or g−1

αi
∈ S. Say that G = ⟨S⟩.

Theorem 1.5 (Types of cyclic groups). Every cyclic group is Z or Z/nZ.

Definition 1.6 (Order of element). The order of g ∈ G is

ord(g) = |⟨g⟩|.

Theorem 1.7 (Lagrange). G finite group and H ≤ G then |H| divides |G|.

Definition 1.8 (Coset equivalence). Let H ≤ G then g1 ∼ g2 ⇔ g1
−1g2 ∈ H ⇔ g1H = g2H. The

equivalence classes under this equivalence relation are the (left) cosets of H in G. They are denoted
{gH : g ∈ G}

Remark 1.9. The set of cosets {gH : g ∈ G} doesn’t necessarily form a group. H has to/should be normal
for the group operation to be well-defined on the set of cosets.

Corollary 1.10. |G| <∞ then g|G| = e. Also, if |G| = p then G ∼= Z/pZ.

Definition 1.11 (Normal subgroup). N ≤ G is normal if ∀ n ∈ N, g ∈ G, we have

gng−1 ∈ N.

This is equivalent to that N is invariant under conjugation, i.e., gNg−1 = N for all g ∈ G, or that it is
a union of conjugacy classes, or that its left cosets and right cosets are the same, i.e., gN = Ng for all
g ∈ G.

We write N ⊴ G.

We are then mostly concerned with non-trivial normal subgroups of a certain group, since {e} and the
entire group obviously satisfy the requirements.

Example 1.12. S3 has conjugacy classes {{e} , {(123), (132)} , {(12), (23), (13)}}. N ⊴ G non-trivially
has to have 2 or 3 elements. It also has to have e, so the only way is N = {e, (123), (132)} = A3.

Example 1.13. S4 has: 1 element of cyclic structure 14,
(
4
2

)
= 6 elements of structure 1221,

(
4
3

)
× 2 = 8

elements of structure 1131,
(
4
2

)
/2 = 3 elements of structure 22, 3! = 6 elements of structure 41 for a total

of 24 elements.

N ⊴ G non-trivially therefore can only have 1 + 3 or 1 + 3 + 8 elements, corresponding to either
N = {e, (12)(34), (13)(24), (14)(23)} = V4 = Z/2Z × Z/2Z the Klein 4-group (symmetries of a non-
square rectangle), or N = A4.
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Definition 1.14 (Simple group). G is simple it has no non-trivial normal subgroup.

Proposition 1.15. φ : G1 → G2 is a homomorphism, then ker(φ) ⊴ G.

Definition 1.16 (Quotient group). For N ⊴ G, the quotient group G/N is the set of cosets (left or
right, they are the same) of N with operation

g1N · g2N = (g1g2)N

which is only well-defined because

g1n1g2n2 = g1g2(g2
−1n1g2n2) ∈ (g1g2)N.

Definition 1.17 (Projection map). Let N ⊴ G then the projection map

π : G→ G/N

g 7→ gN

is a surjective homomorphism with ker(π) = N .

Theorem 1.18 (Correspondence theorem). N ⊴ G then the projection map induces an order-preserving
bijection between subgroups of G containing N and and subgroups of G/N .

Remark 1.19. If N ⊴ G and N ≤ H ≤ G then clearly N ⊴ H, and naturally H/N ∼= π(H). This is just
an instance of the first isomorphism theorem too.

Theorem 1.20 (First isomorphism theorem). Let f : G→ G homomorphism, then G/ ker(f) ∼= im(f).

Definition 1.21 (Normalizer, centralizer, center). Let G be a group.

The normalizer of H ≤ G is NG(H) =
{
g ∈ G : gHg−1 = H

}
.

The centralizer of x ∈ G is C(x) =
{
g ∈ G : gxg−1 = x

}
= {g ∈ G : gx = xg}, i.e., things that commute

with x ∈ G.

The center of G is Z(G) = {g ∈ G : gx = xg ∀ x ∈ G} =
{
g ∈ G : gxg−1 = x ∀ x ∈ G

}
, i.e., things that

commute with everything in G. Z(G) = ∩x∈GC(x).

Proposition 1.22. A few facts on normalizer:

(1) NG(H) = G⇔ H ⊴ G.

(2) H ⊴ NG(H).

(3) This is a tautology, but A ≤ NG(H) simply gives the information that H is invariant under
conjugation by elements in A.

Proposition 1.23. A few facts on center:

(1) Z(Sn) = {e} ∀ n ≥ 3, Z(GLn(F)) = F×.

(2) Z(G) ⊴ G for all G. This is because gzg−1 = z ∀ g ∈ G. So we get “free” normal subgroups this
way.

(3) Similarly, ⟨z⟩ for any z ∈ Z(G) is normal in G because gzkg−1 = zk.

(4) For z ∈ Z(G), Conj(z) = {z}. For the same reason above.

Theorem 1.24 (Second isomorphism theorem). G group with A,B ≤ G with A ≤ NG(B) (read: B is
invariant under conjugation by elements in A). This is trivially satisfied if B is normal. Then AB is a
subgroup of G, and B ⊴ AB and (A ∩B) ⊴ A, and

A/(A ∩B) ∼= (AB)/B

Remark 1.25. AB is a priori not guaranteed to be a subgroup (a product of 2 products of 2 things = a
product of 4 things, so not necessarily a product of 2 things). The fact that A ≤ NG(B) actually makes
sure that this can be brought back to product of 2 things.
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Theorem 1.26 (Third isomorphism theorem). N ≤ H ≤ G and N,H ⊴ G. Then N ⊴ H and

(G/N)/(H/N) ∼= G/H

Remark 1.27. The summary of the 3 isomorphism theorems: Isom I talks about homomorphisms from a
group to itself, and how ker can go undetected. Isom II talks about the interaction between 2 subgroups
of G that are potentially intersecting, and how one can “eliminate” this intersection in different ways.
Isom III talks about 3 groups of different “positions in the hierarchy” and how everything passes through
nicely as expected.

Definition 1.28 (Action). G group, X any set. Then a left action of G on X is a map:

a : G×X → X

(g, x) 7→ gx

such that ex = x, g1(g2x) = (g1g2)x. Naturally, for every g ∈ G, a(g, ·) is a bijection X → X.

Theorem 1.29. Let X have n elements. Then there is a bijection between actions of G on X and
homomorphisms from G→ Sn.

Definition 1.30 (Orbit, stabilizer). We can consider equivalence relation on X where x1 ∼ x2 ⇔ ∃ g ∈
G s.t. x1 = gx2, i.e., G can bring x2 to x1. Then the equivalence classes are orbits, denoted Gx =
{gx : g ∈ G}.

The stabilizer of x ∈ X is Gx = {g ∈ G : gx = x}, i.e., things in G that fixes x under the action. It is
a subgroup of G.

Theorem 1.31 (Orbit-Stabilizer theorem). For a particular x ∈ X, there exists a bijection between left
cosets {gGx} of Gx and the orbit Gx. A consequence is that

|G| = |Gx||Gx|.

So the order of the orbit (which is size of subset in X) divides |G|. The order of the stabilizer (size of
subgroup of G) also divides |G|. This has first isomorphism/rank nullity vibes.

Example 1.32. Consider action: G × G → G with left multiplication. This (induced) homomorphism
was used in Cayley’s theorem.

Example 1.33. Consider action: G × G → G with conjugation. Then the stabilizer Gx = C(x) is
just the centralizer and orbit of x is just G(x) = Conj(x) its conjugacy class. So it implies that
|C(x)| · |Conj(x)| = |G|.

Proposition 1.34 (Class equation). We get for general X that

|X| =
∑

|Gx|

so
|X| = # fixed points + non-trivial orbits

and with G acting on G by conjugation we get

|G| = |Z(G)|+
∑

|Conj(g)|

Theorem 1.35. |G| = pn with n ≥ 1. Then G has a non-trivial center Z(G).

Proof. By Orbit-Stabilizer, we have that |Conj(x)| | |G| = pn, so |Conj(x)| = p≥1 for things outside the
center. So p | |Z(G)| so Z(G) ≥ p ≥ 2.

Theorem 1.36 (Cauchy’s theorem). |G| <∞ with p | |G|. Then G has an element of order p.

Proof. ConsiderX = {(g1, . . . , gp) : g1 . . . gp = e} has |G|p−1 elements. Then define an action Z/pZ = ⟨σ⟩
on X as σ(g1, . . . , gp) = (gp, g1, . . . , gp−1).
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So for any x ∈ X, the size of Gx has to divide p, so either 1 or p. So |X| = n1 + pnp, so p | n1. An easy
element with orbit 1 is (e, e, . . . , e), so there’s another one (g1, . . . , gp) ̸= (e, . . . , e). But then that means
(g1, . . . , gp) = σ(g1, . . . , gp) = (gp, . . . , gp−1) so g1 = · · · = gp = g ̸= e. So we have that gp = g1 . . . gp = e.

Definition 1.37 (Sylow subgroup). Let G be a finite group with G = pkm with (p,m) = 1. A p-Sylow
subgroup is S ≤ G with |G| = pk.

Theorem 1.38 (Sylow I). There exists a p-Sylow subgroup.

Proof. We prove by induction on G (not on k,m). Base case: |G| = pk for all p then satisfied by G itself.

Case 1: p | |Z(G)|. Then by Cauchy’s theorem, there exists g ∈ Z(G) such that ord(g) = p. Then
N = ⟨g⟩ is normal in G and |N | = p.

It follows that |G/N | = pk−1m. By induction, G/N has a p-Sylow subgroup K of size pk−1. By
correspondence theorem, πPre(K) ≤ G and πPre(K)/N ∼= K so |πPre(K)| = pk−1p = pk.

Case 2: (p, |Z(G)|) = 1. Then from the Class Equation

|G| = |Z(G)|+
∑

|Conj(g)|

we get that there exists g with p ∤ |Conj(g)| > 1. But then |C(g)||Conj(g)| = |G| so C(g) = pkm1 where
m1 < m. By induction, there exists some p-Sylow subgroup of C(g), which is of size pk and we’re done.

Remark 1.39. Virtue of the proof is as follows: If p divides the order of Z(G) then we can find a
normal subgroup of size p which we can quotient by, apply induction hypothesis, then project it back.
If p doesn’t, then by class equation that means some conjugacy class is also coprime with p. Apply
Orbit-Stabilizer (or, Centralizer-Conjugacy Class), then the centralizer is good.

Theorem 1.40 (Sylow II). All p-Sylow subgroups are conjugate.

Proof. G = pkm. Let P, S be p-Sylow subgroups. Then P acts on the set of left cosets {g1S, . . . , gmS}
of S with left multiplication. By class equation, we get that

m = # fixed points + non-trivial orbits

but then all orbit sizes have to divide |P | = pk so they are either 1 or p. So p divides size of all non-trivial
orbits. So there’s a fixed point because (m, p) = 1, say, gS.

So, ∀ h ∈ P, h(gS) = gS ⇒ h ∈ gSg−1 ⇒ P ⊆ gSg−1 ⇒ P = gSg−1.

Remark 1.41. It’s also clear that conjugates of p-Sylow subgroups are p-Sylow subgroups.

Corollary 1.42. Note that we didn’t use that P = pk maximally, and only that P is a p-subgroup. So
every p-subgroup of G is contained in some Sylow p-subgroup, i.e., P ⊆ gSg−1.

Theorem 1.43 (Sylow III). The number of p-Sylow subgroups np satisfies np | m and np ≡ 1(modp).

Proof. Consider P the set of all p-Sylow subgroups. Consider G acting on P by conjugation: ag : P 7→
gPg−1.

By Sylow II, this action is transitive, i.e., there’s only 1 orbit of size |P| = np. And for a particular
P ∈ P, we have that the stabilizer of P under this action is just NG(P ). Then Orbit-Stabilizer implies
that (G : NG(P )) = np.

But now we gotta make m pop out, so also note that P ⊴ NG(P ) almost by definition. So

(G : NG(P ))(NG(P ) : P ) = (G : P ) ⇒ np | (G : P ) = m.

For the next part, consider P acting on P by conjugation. Let (NG(P ) : P ) = m′ then m′ | m so
(m′, p) = 1, and |NG(P )| = pkm′.
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The action is no longer transitive because P ∈ P is an obvious fixed point. We claim that it’s the unique
one.

Suppose that there’s another fixed point Q ∈ P, i.e., such that ∀ g ∈ P, gQg−1 = Q. Then that implies
P ≤ NG(Q). But Q ⊴ NG(Q) too, so they are both p-Sylow subgroups of NG(Q). But by Sylow II
applied to NG(Q), it follows that P and Q are conjugate in NG(Q). But conjugate Q with anything in
NG(Q) can only get us Q, so P = Q.

Therefore by class equation, np = |P| = 1 + other non-trivial orbits, where the size of non-trivial orbits
divides |P | = pk so p divides them. So np ≡ 1(modp).

Proposition 1.44. The only abelian simple groups are Z/pZ.

Proof. Suppose not. There exists some p | |G| ≠ p. By Cauchy’s theorem, there exists g ∈ G such that
ord(g) = p. Since it’s abelian, ⟨x⟩ ⊴ G.

Theorem 1.45 (The big one). If G non-abelian and simple with order ≤ 60 then G ∼= A5.

Theorem 1.46. The only normal subgroups of Sn for n ≥ 5 are {e} , Sn and An.

Theorem 1.47. An is simple for n ≥ 5.

Remark 1.48. The second theorem is not a corollary of the first theorem. Even if An did have a normal
subgroup, it does not mean that that subgroup would’ve been normal in Sn.

Proof (for Theorem 1.47). We’ve had a proof for the theorem using 3-cycles in pset 6. Here we present
a different one specifically for A5.

The conjugacy classes in S5 are:

• 5 with 4! = 24 elements.

• 4 + 1 with 5× 3! = 30 elements.

• 3 + 1 + 1 with 10× 2! = 20 elements.

• 2 + 1 + 1 + 1 with 10 elements.

• 3 + 2 with 10× 2 = 20 elements.

• 2 + 2 + 1 with 15 elements.

• 1 + 1 + 1 + 1 + 1 with 1 element.

and the even ones are 5, 3 + 1 + 1, 2 + 2 + 1 and 1 + 1 + 1 + 1 + 1 for total of 24 + 20 + 15 + 1 = 60
elements.

The essential idea is that the conjugacy classes of A5 (which are just permutations) are simply formed
by “splitting off” from the conjugacy classes of S5 (well, they have to have the same cycle structure).
Why they might be different is that the orbits under conjugation in A5 might be smaller compared to
S5, resulting in multiple conjugacy classes within 1 conjugacy class in S5.

Lemma. Let Conj(g) be a conjugacy class in S5. Then it is the union of either 1 or 2 conjugacy classes
of the same size in A5.

Proof of Lemma. Let Conj(g) be a conjugacy class in S5. Let Conj′(h) denote the conjugacy class
of h in A5. Then if h ∈ Conj(g) then Conj′(h) ⊆ Conj(g) too because they all have the same cycle
structure.

So let X = {Conj′(h1), . . . , Conj′(hm)} be the set of conjugacy classes of A5 in Conj(g). Then consider
the action S5 on X by conjugation. Since they are all in Conj(g), it follows that the action is transitive
(well, they’re all conjugate in S5), so there’s only 1 orbit of size m.

Consider the stabilizer S(Conj′(hi)) ≤ S5 for any i. Then since Conj′(hi) is a conjugacy class in A5,
conjugation by A5 fixes Conj′(hi), i.e., A5 ⊆ S(Conj′(hi)).

Therefore it follows that A5 ≤ S(Conj′(hi)) ≤ S5, so either S(Conj′(hi)) = S5 or A5. If S(Conj
′(hi)) =

S5 then that means the orbit size is m = |S5|/|S(Conj′(hi))| = 1. So Conj(g) = Conj(h1) is the entire
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conjugacy class in A5.

Otherwise, if S(Conj′(hi)) = A5 then that means the orbit size is m = 2 with Conj′(h1) ∪Conj′(h2) =
Conj(g). However, since h1, h2 ∈ Conj(g), it follows that there exists σ ∈ S5 such that h1 = σh2σ

−1,
so ah1a

−1 7→ (σaσ−1)(σh1σ
−1)(σa−1σ−1) the conjugation by (σaσ−1) ∈ A5, is a bijection between

Conj′(h1) and Conj
′(h2) so they are of the same size. And we’re done with the lemma.

Back to main proof. We can reach some conclusions:

• Conj((∗ ∗ ∗ ∗ ∗)) has size 24 which doesn’t divide 60, so the 5-cycles split into 2 conjugacy classes
in A5.

• Conj((∗∗)(∗∗)) has size 15 which is odd, so it’s kept as 1 conjugacy class in A5.

so the only undetermined thing is whether Conj((∗ ∗ ∗)) breaks into 2 or not. But that doesn’t matter
because A5 is either decomposed as 1 + 12+ 12+ 15+ 20 or 1 + 12+ 12+ 15+ 10+ 10 — either way —
we can’t make a non-trivial normal subgroup out of any union of conjugacy classes.

Proof (for Theorem 1.46). Let N ⊴ Sn with n ≥ 5 but N ̸= {e} , An, Sn.

Then (similar to Second Isomorphism) we get that An ∩ N ⊴ An since An is in the normalizer of N ,
i.e., Sn. But An is simple for all n ≥ 5, so either An ∩ N = An which implies An ≤ N ≤ Sn which
implies N = An or N = Sn; or An ∩ N = {e} which implies An/(N ∩ An) ∼= AnN/N by Second
Isomorphism, which implies AnN/N of size |An|. We have that An ≤ AnN ≤ Sn so either AnN = An

or AnN = Sn. If AnN = An then that means |N | = 1 which is a contradiction. If AnN = Sn then that
means |N | = 2, so N = {e, n}. N is normal in Sn which means σnσ−1 ∈ N , in particular it can’t be e,
so σnσ−1 = n⇒ n ∈ Z(Sn).

But Z(Sn) = {e} for all n ≥ 3, so a contradiction.

Remark 1.49. S3 has conjugacy classes (∗∗∗) = 2, (∗∗) = 3, e = 1 so the only non-trivial normal subgroup
is {e, (∗ ∗ ∗)} = A3.

Remark 1.50. S4 has conjugacy classes (∗ ∗ ∗∗) = 6, (∗ ∗ ∗) = 8, (∗∗) = 6, (∗∗)(∗∗) = 3, e = 1. So
the only non-trivial normal subgroups of S4 are 1 + 3 being {(∗∗)(∗∗), e} = V4 and 1 + 3 + 8 being
{e, (∗ ∗ ∗), (∗∗)(∗∗)} = A4.

Definition 1.51. We have that GLn(F) is the group of n×n invertible matrices with entries in F. Define
PGLn(F) = GLn(F)/Z(GLn(F)) = GLn(F)/λI up to scaling of all entries. SLn(F) is the group of n×n
invertible matrices with determinant 1. Similarly define PSLn(F).

Remark 1.52. Let’s count for F = Fp and n = 2. Then size of GL2(Fp) is (p
2−1)(p2−p) = (p−1)2p(p+1).

Size of PGL2(Fp) is (p − 1)2p(p + 1)/(p − 1) = (p − 1)p(p + 1). Size of SL2(Fp) is the same (kernel of
determinant map). Size of PSL2(Fp) is half of that.

Though PGL2(Fp) and SL2(Fp) have the same number of elements, the fact that we have PSL2(Fp)
already indicates their difference. Z(SL2(Fp)) = {±I} while Z(PGL2(Fp)) is trivial for p ≥ 5.

Definition 1.53. Let V be a vector space over F, then the projective space P (V ) is the set of lines
(1-dimensional subspaces) of V . Denote P (Fn) = Pn−1

F .

In particular, we use homogeneous coordinates for Pn−1
F = {[x1 : x2 : · · · : xn] : not all zeros}. For P 1

F =
P (F2) we get that the lines are {[x : 1] : x ∈ F} ∪ {[1 : 0]} = F ∪ {∞}.

Then the action GLn(F) on Fn induces (just matrix multiplication) an action PGLn(F) on Pn−1
F .

Definition 1.54 (General position). p1, . . . , pn ∈ Pn−1
F are in general position if they span Fn.

Theorem 1.55. Consider points p1, . . . , pn+1 in Pn−1
F such that any n are in general position. Similarly

q1, . . . , qn+1. Then there exists uniquely f ∈ PGLn(F) such that f(pi) = qi.

Corollary 1.56. Applying this to P 1
F then given any 3 points in P 1

F , and any other 3 points in P F
1 , there

exists uniquely f ∈ PGL2(F) that move them around. It’s often helpful to just base everything in moving
to/from {[0 : 1], [1 : 1], [1 : 0]} = {0, 1,∞}.

6



Lecture 1: Revision of the entire thing

Definition 1.57 (k-transitive). An action of G on X is k-transitive if any k points in X can be moved
to any other k points using some g ∈ G. It is sharply k-transitive if such g is unique.

Then the action of PGL2(F) on P 1
F is sharply 3-transitive.

Theorem 1.58. PGL2(F5) ∼= S5.

Proof. Consider the action of PGL2(F5) on the projective space P (F2
5) = P 1

F5
of six points (projective

lines). This induces a homomorphism:

ψ : PGL2(F5) → S6

A ∈ ker(ψ) fixes all 6 points. Since PGL2(F5) is sharply 3-transitive, A = I uniquely. So ψ is injective.
So we have H = im(ψ) ≤ S6 is a subgroup of index 6!

(52−1)(52−5)/4 = 720/120 = 6.

Lemma. (Pretty generic) If H ≤ Sn of index n then H ∼= Sn−1 for n ≥ 5. In particular, if H ≤ S6 of
index 6 then H ∼= S5.

Proof of lemma. We prove for n = 6 and easily generalizable. Consider the action of H on the cosets
{H, g2H, . . . , g6H} by left multiplication. Then an obvious fixed point is H. So this action induces a
homomorphism:

φ : H → S5

|H| = |S5| = 120 so it remains to show that ker(φ) = {e}. We get that

ker(φ) = {h ∈ H : ∀ g ∈ S6, hgH = gH} =
⋂

g∈S6

gHg−1

but it is easy to see that it is normal in S6. But the only normal subgroups of S6 are {e} , A6, S6. And
ker(φ) has size ≤ 120, so it has to be that ker(φ) = {e}.

Proposition 1.59. Some facts from HW:

(1) H ≤ G finite. If (G : H) = 2 then H is normal. (G : H) = 3 then not necessarily.

(2) For n ̸= 6, any automorphism of Sn is given by conjugation.

(3) Let k ≤ n be even. Then every element in Sn can be written as a product of k-cycles.

(4) If G is a p-group and H ⊂ G has index p then it is normal in G. Proof by considering action of G
on set of p cosets of H by left multiplication.

Proposition 1.60. PSL2(F5) ∼= A5.

Proof. We know that PGL2(F5) ∼= S5. PSL2(F5) is of index 2 in PGL2(F5), so it is normal. The only
normal subgroups of S5 are {e} , A5, S5. So PSL2(F5) ∼= A5.

Proposition 1.61. Groups of order pn are not simple for n ≥ 2.

Proof. Let G have pn elements. By the class equation we get that

pn = |Z(G)|+
∑

|Conj(g)|

And we know that the sizes have to be the form p∗. So |Z(G)| ≥ p ≥ 2. Furthermore, Z(G) ̸= G
because if so then G is abelian – but the only abelian simple groups are Z/pZ. It follows that Z(G) is a
non-trivial normal subgroup of G, so G is not simple.

Theorem 1.62 (Simple group of order 60). If G is of order 60 and G is simple then G ∼= A5.

Proof. 60 = 22 × 3× 5. Easy to see from Sylow III + too few Sylow p-subgroups that n3 = 10, n5 = 6.
Only indecision is if n2 = 5 or n2 = 15.

Case 1: If n2 = 5 we get that the transitive action of G on the set of 2−Sylow subgroups by conjugation
induces a homomorphism

ψ : G→ S5

7
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Clearly ker(ψ) = {e}.

Compose with sign then we get homomorphism

sign ◦ψ : G→ {±1}

and ker(sign ◦ψ) can’t be {e} (size) so has to be G, so has to be all even permutations.

Case 2: If n2 = 15 then we gotta do some counting. There are 20 elements of order 3 and 24 elements
of order 5. So there are 16 left. If all 2-Sylow subgroups (each of size 4) have trivial intersection then
there are too many elements. So there exists S1, S2 that are 2-Sylow subgroups such that |S1 ∩ S2| = 2.

Note that S1, S2 of order 4 so abelian, so if we consider N = NG(S1 ∩ S2) then S1, S2 ≤ NG(S1 ∩ S2).
So size of normalizer is at least 6, and divisible by 4. It also has to divide 60. So either 4 × 3 = 12 or
4× 5 = 20.

If N of size 20 then G acts on G/N of size 3 by left multiplication. Too small.

If N of size 12 then G acts on G/N of size 5 by left multiplication. Again we have a homomorphism to
S5, and by the same argument A5.

Definition 1.63 (Composition series). For any G finite group, there exists a composition series:

{e} = G0 ⊴ G1 · · · ⊴ Gn = G

where the relations are strict and all Gk/Gk−1 are simple. Moreover, the sequence of quotient groups is
unique up to permutation. In particular, the length of the maximal chain is unique/well-defined.

Proposition 1.64. Some claims on groups of order not being simple. Overarching idea is that G acting
on P set of p-Sylow subgroups by conjugation induces homomorphism ψ : G → Snp . If np > 1 (the
interesting case), we know that this homomorphism is not trivial (i.e., not everything is sent to id
because by Sylow II all p-Sylow subgroups are conjugate). So ker(ψ) ̸= G. So has to be ker(ψ) = {e}.
So |G| ≤ |Snp

| = np! which causes trouble when np is too small.

Let p < q < r here

(1) pn not simple as above

(2) pq has nq = 1. In fact any pq∗.

(3) p2q has nq = p2 ≡ 1 mod p implies p = 2, q = 3. So 12. But n2 = 3 too few.

(4) p2q2 has p = 2, q = 3 but so 36 but nq = 4 too few.

(5) p3q. If nq = p2 then same as above. If nq = p3 then p3(q − 1) elements of order q. so only p3

elements left, and that’s the only p-Sylow subgroup left. But then np = 1.

(6) p4q argument seems to only work for below 60. Then p = 2, q = 3 and whatever.

(7) 2× 3× 5 or 2× 3× 7. Either count elements or too few Sylow subgroups.
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