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Lecture 1

Abelian Group, Field, Equivalence

21 Mar 2023

Goal

Vector spaces and maps between vector spaces (linear transformations)

1.1 Abelian Group

Definition 1.1 (Abelian Group)

A pair (A, ∗) is an Abelian group if A is a set and ∗ is a map: A× A 7→ A (closure is implied) with
the following properties:

1. (Additive Associativity)
(x ∗ y) ∗ z = x ∗ (y ∗ z), ∀ x, y, z ∈ A

2. (Additive Commutativity)
x ∗ y = y ∗ x, ∀ x, y ∈ A

3. (Additive Identity)
∃ 0 ∈ A : 0 ∗ x = x ∗ 0 = x, ∀ x ∈ A

4. (Additive Inverse)
∀ x ∈ A, ∃ (−x) ∈ A : x ∗ (−x) = (−x) ∗ x = 0

Remark

(∗ is just a symbol, soon to be +). Typically write as (A,+) or simply A

Example

1. (Z,+) is an Abelian group

2. (Q,+) is an Abelian group

3. (Z,×) is NOT an Abelian group (because identity = 1, and 0 does not have a multiplicative
inverse)

4. (Q,×) is also not an Abelian group (0 does not have a multiplicative inverse)

5. (Q\{0},×) is an Abelian group (identity is 1)

6. (N,×) is NOT a group

Remark

A crucial difference between Z and Q\{0} is that Q\{0} has both + and × while Z only has +. This
gives us inspiration for the definition of a field!

Definition 1.2 (Field)

A field is a triple (F,+, ·) s.t.

1. (F,+) is an Abelian group with identity 0

2. (Multiplicative Associativity)

(x · y) · z = x · (y · z), ∀ x, y, z ∈ F

1
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3. (Multiplicative Commutativity)
x · y = y · x, ∀ x, y ∈ F

4. (Distributivity) (+ and · talking in the following way)

x · (y + z) = (x · y) + (x · z), ∀ x, y, z ∈ F

5. (Multiplicative Identity)
∃ 1 ∈ F : 1 · x = x, ∀ x ∈ F

6. (Multiplicative Inverse)
∀ x ∈ F\{0}, ∃ y ∈ F : x · y = 1

Remark

In a field (F,+, ·), assume that 1 ̸= 0

Example

1. (Z,+, ·) is not a field (because property 6 failed)

2. (Q,+, ·) is a field

3. (R,+, ·) and (C,+, ·) are fields.

1.2 Finite Fields

Recall

p ∈ Z is a prime if ∀ m ∈ N : m | p⇒ m = 1 orm = p

Definition 1.3 (Fp for p prime)

Fp = {[0], [1], . . . , [p− 1]}

Then define the operations for [a], [b] ∈ Fp

[a] + [b] = [a+ b mod p]; [a] · [b] = [a · b mod p]

Then Fp is a field, but this is not trivial.

Lemma 1.1

1. (Fp,+) is an Abelian group

2. (Fp,+, ·) is a field

Example

F5 = {[0], [1], [2], [3], [4]}

[1] + [2] = [3], [2] + [4] = [1], [4] + [4] = [3], [2] + [3] = [0]

Then it is trivial that [0] is additive identity, and every element has additive inverse. [1] is multiplicative
identity, and every element except [0] has multiplicative inverse. Therefore F5 is indeed a field.

1.3 Vector Spaces in brief

2
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Intuition

The motivation for vector spaces and maps between them (linear transformations) is essentially to solve
linear equations. Let (K,+, ·) be a field. We are then interested in systems of linear equations / K; if
there are solutions, and if there are how many.

We then inspect a system of linear equations of n unknowns, m relations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · = · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

where aij , bk ∈ K.

Example

2x1 − x2 + x3 = 0 (1)

x1 + 3x2 + 4x3 = 0 (2)

over some field K.

Explanation

Then, 3× (1) + (2) (carrying out the operations in K) yields

7x1 + 7x3 = 0

7 · (x1 + x3) = 0
(3)

Then, we have 2 cases.
Case 1: 7 ̸= 0 in K, then ∃ 7−1 ∈ K : 7−1 · 7 = 1.
Then (3) ⇒ 7−1 · (7 · (x1 + x3)) = 0

((7−1) · 7) · (x1 + x3) = 0

1 · (x1 + x3) = 0

⇒ x1 + x3 = 0

⇒ x1 = −x3

Let x3 = a⇒ x1 = −a⇒ x2 = 2x1 + x3 = −a.
⇒ {(−a,−a, a) | a ∈ K} are solutions.

Case 2: 7 = 0 in K (e.g. in F7) then (3) is automatically true.
Let x1 = a, x3 = b⇒ x2 = 2x1 + x3 = 2a+ b
⇒ {(a, 2a+ b, b) | a, b ∈ K} are solutions.

Remark

When doing 3× (1)+ (2), how do we know if we’re gaining or losing information? e.g in F7 we can just
multiply by 7 and get nothing new! Therefore some kind of “equivalence” concept must be introduced!

Definition 1.4 (Linear combination)

Suppose S = {
∑
aijxj = bi}1≤i≤m,1≤j≤n is a system of linear equations over K. S′ = {

∑
a′ijxj =

bi}1≤i≤m,1≤j≤n is another system of linear equations (not too important how many equations there are
in S′). Then, S′ is a linear combination of S if every linear equations

∑
a′ijxj = bi in S′ can be

3
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obtained as linear combinations of equations in S, i.e.
∑
a′ijxj = b′i is obtained through∑

ci

(∑
aijxj

)
=
∑

cibi, 1 ≤ i ≤ m, for some ci ∈ K

Definition 1.5 (Equivalance)

2 systems S, S′ are equivalent if S′ is a linear combination of S and vice versa. Denote S ∼ S′

Example

In previous example, S = {(1), (2)}, S′ = {(1), (3)}, S′′ = {(2), (3)}, S′′′ = {(3)}.
Then, S ̸∼ S′′, S ∼ S′ always , S ∼ S′′ only if 3 is invertible

Explanation

From S′, (1) = (1), (2) = (3) - 3 · (1). Therefore S is a linear combination of S′. ⇒ S ∼ S′.
From S′′, (2) = (2), 3 · (1) = (3) - (2). If 3−1 ∈ K(i.e.3 ̸= 0) then (1) = 3−1((3) - (2)) is thus recoverable
from S′′, then S ∼ S′′. Otherwise, no.

4
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Lecture 2

Matrices

28 Mar 2023

Proposition 2.1

If 2 systems of linear equations are equivalent, S ∼ S′ then they have the same set of solutions

Remark

Why is this important? This becomes important if we have a complicated system and want to transform
into a simpler system to solve.

Proof (Proposition 2.1)

If (x1 = α1, x2 = α2, . . . , xn = αn) is a solution ot S then we claim that it’s also a solution of S′ and
vice versa. This is trivial because S ∼ S′.

Definition 2.1 (Matrix)

Let K be a field. Then an m× n matrix with coefficients in K, is an ordered tuple of elements in K,
typically written as 

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 ∈Mm×n(K)

Definition 2.2 (Matrix Multiplication)

If T1 ∈Mm×n(K), T2 ∈Mn×l(K) then T1 · T2 ∈Mm×l(K) (where m,n, l ∈ N). Specifically,
a11 a12 · · · · · · a1n

a21 a22 · · · · · · a2n
...

...
. . . · · ·

...

am1 am2 · · · · · · amn

 ·

b11 b12 · · · b1l

b21 b22 · · · b2l
...

...
. . .

...

bn1 bn2 · · · bnl

 =


c11 c12 · · · · · · c1l

c21 c22 · · · · · · c2l
...

...
. . . · · ·

...

cm1 cm2 · · · · · · cml


where

cij = the “inner product” of i-th row of T1 and j-th row of T2

=

n∑
t=1

aitbtj

∀ (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ l

In particular, if T1, T2 ∈Mn := Mn×n(K) then T1 ·T2 and T2 ·T1 are both valid. In general, they’re often
not equal.

Observe

5
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We can write system of linear equations as

T ·


x1

x2
...

xn

 =


b1

b2
...

bm


where

T ∈Mm×n(K),


x1

x2
...

xn

 ∈Mn×1(indeterminants),


b1

b2
...

bm

 ∈Mm×1(K)

Then, finding solutions to S is equivalent to finding (α1, α2, . . . , αn) ∈ K s.t.

T ·


α1

α2

...

αn

 =


b1

b2
...

bm



Exercise 2.1

If T1, T2, T3 ∈Mn(K) then (T1 · T2) · T3 = T1 · (T2 · T3). This is by no means obvious.

Definition 2.3 (Identity Matrix)

In = idn =



1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

. . .
...

0
... · · ·

. . . 1 0

0 0 0 · · · 0 1


∈Mn(K)

Observe

In · T = T · In, ∀ T ∈Mn(K)

Thus, (Mn(K), ·) is “trying” to be a group, but it’s not.

Definition 2.4 (Invertible Matrix)

A matrix T ∈Mn(K) is invertible if ∃ T ′ ∈Mn(K) s.t.

T · T ′ = In

6
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Exercise 2.2

If T · T ′ = In ⇒ T ′ · T = In

Definition 2.5 (General Linear Group GLn(K))

GLn(K) = {T ∈Mn(K) | T is invertible}

Remark

Then (GLn(K), ·) is a group.

Definition 2.6 (Elementary Row operations)

Let S be the system of equations: ∑
a1jxj = b1 (1)∑
a2jxj = b2 (2)

... =
...∑

amjxj = bm (m)

then there are 3 elementary row operations:

1. Switching 2 of the equations

2. Replace (i) with c · (i) where c ̸= 0

3. Replace (i) by (i) + d(j) where i ̸= j

Proposition 2.2

If S′ can be obtained from S via a finite sequence of elementary row operations then S ∼ S′.

Corollary 2.1

S can also be obtained from S′ via a finite sequence of elementary row operations.

Corollary 2.2

If S′ can be obtained from S via a finite sequence of elementary row operations then they have the
same solutions.

7
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Lecture 3

Vector Spaces

30 Mar 2023

3.1 Elementary Row Operations and Systems of Linear Equations

Question: What are we doing to the matrices A,B(Ax = B) (A of size m × n, B of size n × 1) when
elementary row operations are carried out?
Answer: The row operations operate on the rows of A (switching rows, multiplying by scalar, adding
other rows)

Example

A0 =


2 1 1

1 2 3

1 1 1

 (1′)=(1)+−2(3)∼ A1 =


0 −1 −1

1 2 3

1 1 1

 ∼ · · · ∼ A7 =


1 0 0

0 1 0

0 0 1



1 0 0

0 1 0

0 0 1



x1

x2

x3

 =


b . . .

b . . .

b . . .



We eventually arrived LHS =


x1

x2

x3

 itself, due to the properties of I3. By “simplifying” rows this way,

we can therefore solve systems of linear equations.

Definition 3.1 (Row-reduced Matrix)

The row-reduced form of a matrix has 1 as the leading non-zero coefficient for each of its rows (0-
padded on the left). Furthermore, each column which contains the leading non-zero entry of some row
has all its other entries as 0. By convention, the leading coefficient of a row of higher row index also
has a higher column index.

Proof (Proposition 2.2)

We only provide a sketch of the proof. We re-enumerate the types of operations:

1. (i)↔ (j)

2. (i)→ c(i), c ̸= 0

3. (i)→ (i) + d(j), j ̸= i

Explanations:

1. Trivial

2. Clearly S′ is obtainable from S, and trivially all other equations except for (i) of S are obtainable
from S′. However, (i) = c−1(c(i)) = c−1(i′). Therefore S ∼ S′.

3. Similarly, S′ is clearly obtainable from S, while (i) = (i′)− d(j) = (i′)− d(j′). Therefore S ∼ S′.

3.2 Vector Spaces

8
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Definition 3.2 (Vector Space)

Let K be a field. A vector space over K (“K-vector space”)(“k-vs”) is an Abelian group V with
a map: K × V → V (K-action on V ). An element in V is called a vector. They have to satisfy
∀ a, b ∈ K; ∀ v, v1, v2 ∈ V :

1. 0 · v = 0
1 · v = v

2. (a+ b) · v = (a · v) + (b · v)
(a · b) · v = a · (b · v)

3. a · (v1 + v2) = (a · v1) + (a · v2)

Essentially, K, V with operations:

1. + : K×K→ K, · : K×K→ K (Field)

2. + : V × V → V (Abelian group)

3. · : K× V → V (Action)

Example

Field K = R, V = Rn .
= {(x1, x2, . . . , xn) | xi ∈ R}. Indeed, Rn is an Abelian group.

Definition 3.3 (Linear Combination)

Let V be a k-vs. If v1, v2, . . . , vr ∈ V ; r ∈ N then a linear combination of {v1, v2, . . . , vr} is a vector
of the form

c1 · v1 + c2 · v2 + · · ·+ cr · vr where ci ∈ K

Definition 3.4 (Linear Span)

Then the linear span of v1, v2, . . . , vr in V is the set of all such linear combinations.

9
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Lecture 4

Linear Transformation, Homomorphism, Kernel, Image

04 Apr 2023

4.1 Vector Subspace

Definition 4.1 (Vector Subspace)

Let V be a K-vector space. A subspace (or sub-vector space) of V is a subset W ⊆ V s.t. W is
itself a K-vector space under addition and scaling induced from V . A priori, we know that

+ :W ×W → V, · :W ×W → V

but this subspace requirement implies that

∀ x, y ∈W,x+ y ∈W

∀ α ∈ K, x ∈W,α · x ∈W

In other words, the subspace is closed under addition and scaling.

Example

Take K = R, V = R2, with ordinary addition and scaling.
Consider the subset represented by line y = 1.

This is not a subspace because there exists no 0 element. This kinda implies that any subspace of R2

must pass through the origin (0, 0).
Consider another instance, this time the following ray:

This is also not a subspace, since there’s no additive inverse. Therefore a subspace shall look something
like this:

10
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4.2 Mapping

Motivation

A map from sets to sets can be anything. e.g. x : Z 7→ x2 : Z doesn’t preserve the “group” structure
(x+ y)2 ̸= x2 + y2 most of the time.

Definition 4.2 (Group Homomorphism)

Let A,B be Abelian groups. Map ψ : A→ B is called a group homomorphism if:

ψ(x+ y) = ψ(x) + ψ(y)

Then x : Z 7→ x2 : Z is not a group homomorphism, but x : Z 7→ nx : Z for fixed n is a group
homomorphism.
Here, a natural question arises: If given 2 vector spaces, what maps are allowed between them? What
structures do we have to preserve?

Definition 4.3 (Linear Transformation)

Let V,W be K-vector spaces. Then a vector space homomorphism is also called a linear trans-
formation, a map ψ : V →W s.t.

1. ψ(v1 + v2) = ψ(v1) + ψ(v2) ∀ v1, v2 ∈ V

2. ψ(α · v) = α · ψ(v) ∀ α ∈ K, v ∈ V

Denote HomK(V,W) as the set of all linear transformations V →W .

Example

K = R, V =W = R
HomR(V,W ) = {ψ : R→ R | (1), (2) are satisfied }
We claim that ψ(1) uniquely determines the map ψ, because

ψ(α) = α · ψ(1)

Essentially, there exists a bijection between HomR(V,W ) and R:

HomR(V,W )→ R
ψ → ψ(1)

(ψβ : x 7→ x · β)← β

Example

K = R, V = R,W = any K-vector space
We, similarly, claim that there is a bijection between HomR(V,W ) andW . With the same reasoning, ψ
is determined by ψ(1), though this time ψ(1) ∈W .

11
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HomR(V,W )→W

ψ → ψ(1) ∈W
(ψβ : x 7→ x · w)← w

Example

As a sub-example of the example above, consider W = R2:

Then if ψ(1) = (4, 5) as above (and ψ(0) = (0, 0) implicit), then ψ would map the rest of V = R onto
the dotted line above.
An interesting point to note is that if ψ(1) = (0, 0), then the entire real line would get sent (and
compressed) to (0, 0). ψ(0,0) therefore contracts R into one point (the origin (0, 0)) while others output
a subspace of R2.

Example

K = R, V = R2,W = any R-vector space
We claim that there exists a bijection between HomR(R2,W ) and W ⊕W ; as each ψ is determined by
ψ((1, 0)) and ψ((0, 1)).
The notation ⊕ is defined as: If V,W are K-vector spaces then

V ⊕W = {(v, w) | v ∈ V,w ∈W}

e.g. R2 = R⊕ R
Then V ⊕W would also be a K-vector space with operations +, · defined intuitively:

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

α · (v, w) = (α · v, α · w)

Back to the example, ∀ v = (x, y) ∈ V, v = x(1, 0) + y(0, 1), therefore

ψ(v) = ψ((x, y)) = x · ψ((1, 0)) + y · ψ((0, 1))

ψ is therefore uniquely defined by ψ((1, 0)) and ψ((0, 1)).

Example

K = R, V = Rm,W = any R-vector space
Think about W = Rn with similar reasoning.
Hint: We want to show there exists a bijection between HomR(Rm,Rn) and Rm·n, but this is often
rewritten as Mm×n(R)

12
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4.3 Isomorphism, Kernel, Image

Every linear transformation is just a map, and we can therefore question if it is injective, surjective or
bijective. In all cases, these concepts simply deal with the sets (vector spaces) as simply sets.

Definition 4.4 (Isomorphism)

A K-linear transformation ψ : V →W is an isomorphism if it is bijective.

Definition 4.5 (Kernel, Image)

Let ψ : V →W be a linear transformation over K. Then:

1. Kernel: ker(ψ) := {v ∈ V | ψ(v) = 0} ⊆ V

2. Image: im(ψ) := {w ∈W | ∃ v ∈ V s.t. ψ(v) = w}

Lemma 4.1

1. ker(ψ) is a K-vector subspace of V

2. im(ψ) is a K-vector subspace of W

Proof (Lemma)

We want to show that if x, y ∈ ker(ψ) then x+ y ∈ ker(ψ).

ψ(x+ y) = ψ(x) + ψ(y)( since ψ is a linear transformation )

= 0 + 0

= 0

Therefore x+ y ∈ ker(ψ)
Furthermore, ∀ α ∈ K, x ∈ ker(ψ) then

ψ(α, x) = α · ψ(x) = α · 0 = 0⇒ α · x ∈ ker(ψ)

Therefore ker(ψ) is a subspace.
Similarly, im(ψ) is a subspace.

Definition 4.6 (Finite Dimensional, Dimension)

1. Let V be a K-vector space. V is called finite dimensional if there exists a surjective linear
transformation Kr → V where r ∈ Z≥0. As a consequence, Kr is also finite dimensional, with an
identity mapping.

2. If V is finite dimensional then dimension of V is defined as

dimV := min{k ∈ Z≥0 | ∃ surjective linear transformationKr ↠ V }

13
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Lecture 5

Span, Linear Independence, Basis

06 Apr 2023

Recall

Linear Combination: Let V = K-vector space with v1, v2, . . . , vr ∈ V then

K⟨v1, v2, . . . , vr⟩ := {w ∈W | w = a1v1 + · · ·+ arvr; ai ∈ K} ⊆ V ( is a subspace of V )

Definition 5.1 (Span)

{v1, v2, . . . , vr} span V if
K⟨v1, v2, . . . , vr⟩ = V

i.e. equality is achieved: every vector in V can be written as linear combinations of {v1, v2, . . . , vr}

Connecting to the previous lecture, let ψ : Kr → V then ψ ∈ HomK(Kr, V )
∼−→ V ⊕r, i.e. ψ corresponds

to (v1, v2, . . . , vr) in V .
In particular, (v1, v2, . . . , vr) ∈ V ⊕r determines the map:

ψ : (1, 0, . . . , 0) ∈ Kr → v1

(0, 1, . . . , 0) ∈ Kr → v2

...

(0, 0, . . . , 1) ∈ Kr → vr

(α1, α2, . . . , αr) ∈ Kr → α1v1 + α2v2 + · · ·+ αrvr

Lemma 5.1

1. Let ψ : Kr → V be a linear transformation determined by v1, v2, . . . , vr ∈ V , i.e. ψ(α1, α2, . . . , αr) :=∑r
i=1 αivi, then

im(ψ) = K⟨v1, v2, . . . , vr⟩

is a subspace of V

2. {v1, v2, . . . , vr} span V ⇔ ψ is surjective

i.e. a surjection Kr → V corresponds to r vectors v1, v2, . . . , vr ∈ V that span V

Remark

V is finite dimensional when ∃ surjection Kr → V
⇔ ∃ r vectors v1, v2, . . . , vr that span V .
Recall: dimV = min{r ∈ Z≥0 s.t. ∃ surjectiveKr → V }.
Next, what does it mean for ψ to be injective?

Definition 5.2 (Linear Independence)

v1, v2, . . . , vr ∈ V are linearly independent if

a1v1 + a2v2 + · · ·+ arvr = 0; ai ∈ K⇒ a1 = a2 = · · · = ar = 0

i.e. there doesn’t exist non-trivial relations between the vectors.

Example

In R2, (0, 1) and (0, 2) are not linearly independent because

(−2)(0, 1) + (0, 2) = (0, 0)

14
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But (0, 1) and (1,0) are linearly independent.

Consequentially, they are linearly dependent otherwise, i.e.

∃ ai not all 0 s.t.
∑

aivi = 0

Lemma 5.2

Given ψ : Kr → V corresponds to v1, v2, . . . , vr then v1, v2, . . . , vr are linearly independent if and only
if ψ is injective

In order to prove the lemma above, we shall make use of a more convenient test for whether a map
φ : Kr → V is injective.

Lemma 5.3

Let φ : V →W be a linear transformation then φ is injective if and only if

ker(φ) = {0} ⊆ V

Proof (Lemma 5.3)

⇒ We assume that φ is injective, want to show that ker(φ) = {0}.
We know that φ(0) = 0⇒ 0 ∈ ker(φ) but since φ is injective, ∄v ̸= 0 ∈ V s.t. φ(v) = 0.
It follows that ker(φ) = 0
⇐ We want to show that x, y ∈ V s.t. φ(x) = φ(y)⇒ x = y

Since φ(x− y) = φ(x+ (−y)) = φ(x)− φ(y) = 0, combined with ker(φ) = 0

⇒ x− y = 0⇒ x = y

Proof (Lemma 5.2)

Applying Lemma 5.3, we want to show: ker(φ) = 0 iff v1, v2, . . . , vr are linearly independent.
⇒ Suppose ker(φ) = {0} then want to show

a1v1 + a2v2 + · · ·+ arvr = 0⇒ ai = 0 ∀ i

But LHS = φ((a1, a2, . . . , ar))⇒ (a1, a2, . . . , ar) ∈ ker(φ)⇒ (a1, a2, . . . , ar) = 0.
Therefore ai = 0 ∀ i.
⇐ Suppose that v1, v2, . . . , vr are linearly independent.

Then for v ∈ ker(φ)⇒ φ(v) = 0, with v = (a1, a2, . . . , ar)

⇒ 0 = φ(v)

= φ((a1, a2, . . . , ar))

= a1v1 + a2v2 + · · ·+ arvr

But since v1, v2, . . . , vr are linearly independent

⇒ ai = 0 ∀ i⇒ v = 0⇒ ker(φ) = 0

Corollary 5.1

If V has dimension d over K then there exists isomorphic φ : Kd ∼−→ V
i.e. φ is a bijective linear transformation

15
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Proof (Corollary)

Since d = dimV , by definition there exists surjective linear transformation π : Kd ↠ V
We then claim that π is also injective.
Proving by contradiction, we suppose that π is not injective.
let v1, v2, . . . , vd be the d vectors that correspond to π, i.e.

π((a1, a2, . . . , ad)) = a1v1 + · · ·+ advd

By Lemma 5.2, π being not injective implies that v1, v2, . . . , vd are linearly dependent.
i.e. there exists b1, b2, . . . , bd ∈ K not identically 0 s.t.

b1v1 + b2v2 + · · ·+ bdvd = 0

WLOG, assume b1 ̸= 0.

⇒ b1v1 = −(b2v2 . . . bdvd)
⇒ v1 = −b−1(b2v2 . . . bdvd)( ∃ b−1 ∵ b1 ̸= 0)

= c2v2 + c3v3 + · · ·+ cdvd

We already know that since π is surjective, thus v1, v2, . . . , vd span V . However, the above equality
implies that v2, . . . , vd already span V !
It follows that there must exist a surjective linear transformation π′ : Kd−1 ↠ V
⇒⇐, since d = min{r | ∃ surjective πr : Kr ↠ V }
Therefore π is injective. It is already surjective, and therefore bijective, making it an isomorphism.

Recall

ψ : Kd → V as determined by v1, v2, . . . , vd is

1. injective when v1, v2, . . . , vd are linearly independent

2. surjective when v1, v2, . . . , vd span V

This naturally leads to our next definition.

Definition 5.3 (Basis)

{v1, v2, . . . , vr} is called a basis of V if they span V and are linearly independent,
i.e. ψ(v1,v2,...,vr) : Kr → V is an isomorphism.

Corollary 5.2

dimK V = d⇔ ∃ basis {v1, v2, . . . , vd} for V

Corollary 5.3

If {v1, v2, . . . , vd} and {w1, w2, . . . , vd′} are basis for V then d = d′.
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Lecture 6

Vector Space as Direct Sums of Subspaces

13 Apr 2023

Lemma 6.1

Let V,W be vector spaces over K. If dimK V = d1,dimKW = d2 then V ⊕W is finite dimensional and
dimK(V ⊕W ) = d1 + d2

Proof (Lemma)

We claim that: If {v1, v2, . . . , vd1} is a basis for V , {w1, w2, . . . , wd2} is a basis for W then

{(v1, 0), (v2, 0), . . . , (vd1 , 0), (0, w1), (0, w2), . . . , (0, wd2)}

is a basis for V ⊕W .
Span
If x ∈ V ⊕W then x = (v, w) for some v ∈ V,w ∈W .
Therefore

x = (v, 0) + (0, w)

=

d1∑
i=1

αi(vi, 0) +

d2∑
j=1

βj(0, wj)

for some αi, βj ∈ K, since {vi}, {wj} are bases.
{(v1, 0), (v2, 0), . . . , (vd1 , 0), (0, w1), (0, w2), . . . , (0, wd2)} indeed spans V ⊕W .
Linearly Independent
Suppose there exists

∑d1
i=1 αi(vi, 0) +

∑d2
j=1 βj(0, wj) = (0, 0)

By comparing the 2 “coordinates”,
∑d1
i=1 αivi = 0 ∈ V and

∑d2
j=1 βjwj = 0 ∈W .

But since {vi}, {wj} are bases ⇒ αi = βj = 0 ∈ K.
It follows that {(v1, 0), (v2, 0), . . . , (vd1 , 0), (0, w1), (0, w2), . . . , (0, wd2)} are indeed linearly independent.
Dimension as size of basis:

⇒ dimK(V ⊕W ) = d1 + d2 = dimK V + dimKW

Example

R⊕ R = R2.
We can view R as a “subspace” of R2, by prescribing the other coordinate. Some ways are described as
follows:

1. L0 : R→ R2, a→ (0, 0)

2. L1 : R→ R2, x→ (x, 0)

3. L2 : R→ R2, y → (0, y)

4. L3 : R→ R2, z → (z, z)

Then, when are these direct sums of subspaces either lacking/redundant to get R2? For example, L0⊕L1

is lacking, while L1⊕R2 is redundant. We thus investigate the relationship between a vector space and
its subspaces.

Let W be a vector space over K. V1, V2 are subspaces of W . Consider

V1 ⊕ V2
π−→W

(v1, v2) −→ v1 + v2

We then inspect the injectivity and surjectivity of this mapping π.

17
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Lemma 6.2

π as above is injective ⇔ V1 ∩ V2 = {0} ⊆W

Proof (Lemma)

⇒ Suppose π is injective.
Let x ∈ V1 ∩ V2 then x ∈ V1, x ∈ V2 ⇒ (−x) ∈ V2.
It follows that (x,−x) ∈ V1 ⊕ V2 and π(x,−x) = x+ (−x) = 0.
Therefore, for π to be injective, x = 0⇒ V1 ∩ V2 = {0}
⇐ Suppose V1 ∩ V2 = {0}. To prove that π is injective, we prove that ker(π) = 0

Let y = (v1, v2) ∈ ker(π), i.e. v1 ∈ V1, v2 ∈ V2, 0 = π(y) = π((v1, v2)) = v1 + v2 ∈W
It follows that v1 = −v2 ∈ V2 ⇒ v1 ∈ V1 ⇒ v1 ∈ V1 ∩ V2 ⇒ v1 = 0⇒ v2 = −v1 = 0
Thus y = (0, 0) = 0V⊕W . Therefore ker(π) = {0}

Corollary 6.1

Suppose V1, V2 are subspaces of W s.t.

1. (surjective) every w ∈W can be written as w = v1 + v2 for some v1 ∈ V1, v2 ∈ V2

2. (injective) V1 ∩ V2 = {0}

then we have a (natural) isomorphism:

V1 ⊕ V2
∼−→W

(x, y)→ x+ y

Remark

Essentially, this answers the question: when can we write a vector space as direct sum of 2 subspaces?

Proposition 6.1

Let V,W be finite dimensional vector spaces over K. Let ψ : V → W be a linear transformation over
K then there exists isomorphism

ker(ψ)⊕ im(ψ)
∼−→ V

Consequentially, dimK V = dimK(ker(ψ)) + dimK(im(ψ))
Warning: ker(ψ) is a subspace of V , but im(ψ) is only a subspace ofW ! We therefore can’t straightaway
apply the results of the previous corollary, but can do that by constructing a subspace of V that is
isomorphic to im(ψ).

Remark

dimK(ker(ψ)) is called the nullity of ψ.
dimK(im(ψ)) is called the rank of ψ

Proof (Proposition)

Since W is finite dimensional, im(ψ) ⊆W is therefore finite dimensional.
Let {e1, e2, . . . , er} be a basis for im(ψ) ⊆W .
Since ei ∈ im(ψ)⇒ ∃ ψ−1(ei) = {v ∈ V | ψ(v) = ei} ≠ Ø
Pick some e′i ∈ ψ−1(ei) for each i then let

U := K⟨e′1, e′2, . . . , e′r⟩ ⊆ V

be the subspace spanned by {e′i}.

18
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Claim 1: ψ induces an isomorphism

U
∼−→ im(ψ)

r∑
i=1

αie
′
i →

r∑
i=1

αiei

Claim 2: ker(ψ) and U satisfy the conditions in the above corollary as subspaces of V .
Before proving the details, we show that the 2 claims give us QED:
Claim 1: ⇒ ker(ψ)⊕ U ∼−→ ker(ψ)⊕ im(ψ)
Claim 2: ⇒ ker(ψ)⊕ U ∼−→ V
Proving Claim 1: From construction,

U
φ−→ im(ψ)

r∑
i=1

αie
′
i →

r∑
i=1

αiei

is surjective. It remains for us to show that it is injective ⇔ ker(φ) = {0}
Suppose

∑r
i=1 αie

′
i ∈ ker(φ) then

im(ψ) ∋ 0 = φ

(
r∑
i=1

αie
′
i

)
=

r∑
i=1

αiei

But since {ei} forms a basis for im(ψ)⇒ αi = 0 ∈ K⇒
∑r
i=1 αie

′
i = 0 ∈ U ⇒ ker(φ) = {0}

φ is therefore injective.
Proving Claim 2: Let v ∈ V , we want to write v as sum of an element from U and an element from
ker(ψ).
Let w = ψ(v) ∈ im(ψ) =

∑
αiei

Let v′ =
∑
αie

′
i ∈ U , then

ψ(v − v′) = ψ(v)− ψ(v′) = w − w = 0

Therefore v − v′ ∈ ker(ψ), and we can write

v = (v − v′)(∈ ker(ψ)) + v′(∈ U)

It remains for us to show that ker(ψ) ∩ U = {0}.
Let any x ∈ ker(ψ) ∩ U then ψ(x) = 0 ∈ im(ψ).
But from claim 1, it follows that x = 0⇒ ker(ψ) ∩ U = {0}
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Lecture 7

Linear Transformation and Matrices

18 Apr 2023 (Zoom)

Recall

1. ψ ∈ HomK(Kr, V ) corresponds to r vectors: v1, v2, . . . , vr:

(ψ : Kr → V )→ {vi} = {ψ(0, . . . , 1, . . . , 0)} (1 in i−th position)

(ψ : (a1, a2, . . . , ar)→
∑

aivi)← {vi}

2. V has dimension d⇔ V has basis {v1, v2, . . . , vd}

3. ψ : V
∼−→W then ψ sends a set of basis {vi}1≤i≤d to a set of basis ψ(vi) of W

Proof (Recall 3)

Approach 1
One might first prove this statement from first principles, that is to show that:

1. {wi = ψ(vi)} span W

2. {wi = ψ(vi)} are linearly independent

This approach is doable, though a little bit tedious.
Approach 2
Observe that {vi} corresponds to a map:

Kd ∼−→ V

while
V

∼−→
ψ
W

by assumption.
It then follows that Kd ∼−→ W , following the function composition, it would yield that this mapping
corresponds to {wi = ψ(vi)}. Therefore {wi} forms a basis of W .

7.1 Linear Transformation as Matrix Multiplication

Claim 7.1

Let V,W be vector spaces over K of dimensions n,m respectively. Let ψ : V → W be a linear
transformation. Then once we’ve fixed bases {vi}1≤i≤n of V and {wj}1≤j≤m of W , ψ corresponds to
Tψ ∈Mm×n(K)
In other words,

ψ ∈ HomK(V,W )↔ Tψ ∈Mm×n(K)

Specifically,

Tψ = (αji) =


α11 α12 · · · α1n

...
...

. . .
...

αm1 αm2 · · · αmn


corresponds to

ψ : vi 7→ α1iw1 + α2iw2 + · · ·+ αmiwm =

m∑
j=1

αjiwj for 1 ≤ i ≤ n
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For any v =
∑n
i=1 βivi ∈ V then

w = ψ(v) =

n∑
i=1

βiψ(vi)

=

n∑
i=1

βi

 m∑
j=1

αjiwj


=

n∑
i=1

m∑
j=1

αjiβiwj

An alternative perspective is that v =
∑n
i=1 βivi can be thought of as a “matrix” multiplication:

β1
...

βn

 (v1 . . . vn)

where


β1
...

βn

 ∈Mn×1(K) and (v1 . . . vn) is just the basis in the row vector form.

(Warning: It is not a matrix, since vi ̸∈ K)
Upshot: If we fix basis v1, v2, . . . , vn then any v ∈ V would be uniquely expressed as v = βivi. The

fixed basis would then correspond to unique matrices


β1
...

βn

 ∈Mn×1(K)

Note that if we change the basis to another {v′i} then

v =
∑

βivi =
∑

β′
iv

′
i where


β′
1

...

β′
n

 ∈Mn×1(K)

Now, if Tψ = (aji)1≤j≤m,1≤i≤n then the map ψ sends v ↔


β1
...

βn

 to


α11 α12 · · · α1n

...
...

. . .
...

αm1 αm2 · · · αmn



β1
...

βn

 =



∑n
i=1 α1iβi = γ1∑n
i=1 α2iβi = γ2

...∑n
i=1 αmiβi = γm

 ∈Mm×1(K)

which corresponds to writing w ∈W under {wj} as

w = γ1w1 + · · ·+ γmwm

=

m∑
j=1

γjwj =

m∑
j=1

n∑
i=1

αjiβiwj

which is similar to the expression above.
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Therefore, once we choose basis {vi}, {wj} of V,W respectively then ψ ↔ Tψ ∈Mm×n(K):

v =

n∑
i=1

βivi → ψ(v) =

n∑
i=1

m∑
j=1

αjiβivi

(αji)


β1
...

βn

↔

γ1
...

γm


7.2 Going from Linear Transformation to Matrix

We’ve successfully represented linear transformation ψ ∈ HomK(V,W ) from Tψ. How about the other
way around, i.e. we know ψ and want to find its corresponding matrix Tψ?
Consider ψ : vi → ψ(vi) ∈ W = c1w1 + · · · + cmwm then we can define aji = cj in this expression.
Iterating over 1 ≤ i ≤ n would yield us Tψ = (aji).

7.2.1 Standard Kn → Km

We have Kn,Km(Kn = K⊕n = {x1, x2, . . . , xn | xi ∈ K}) then there’s a preferred basis {ei}1≤i≤n:

e1 = (1, 0, . . . , 0) ∈ Kn

ei = (0, 0, . . . , 1, . . . , 0) ∈ Kn (i−th position)

...

en = (0, 0, . . . , 1) ∈ Kn

and similarly for e′j ∈ Km.

Under this basis, (x1, x2, . . . , xn) corresponds to


β1
...

βn

 =


x1
...

xn

 ∈Mn×1(K)

It follows that any linear transformation ψ ∈ HomK(Kn,Km) corresponds to

Tψ = (αji) =


α11 · · · α1n

...
. . .

...

αm1 · · · αmn


with ψ sending: 

α11 · · · α1n

...
. . .

...

αm1 · · · αmn



x1
...

xn

 =


y1
...

ym


7.2.2 General Case V →W

With ψ ∈ HomK(V,W ), and isomorphisms ψ1 : Kn ∼−→ V, ψ2 : Km ∼−→ W with corresopnding bases
{vi}, {wj}:
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Kn

V W

Km

ψ1 ψ2

ψ

ψ̃

ψ−1
2

then ψ ∈ HomK(V,W ) corresponds to ψ̃ ∈ HomK(Kn,Km) (through ψ1, ψ2), and this ψ̃ corresponds to
Tψ̃!

Exercise 7.1

Given linear transformation ψ : Kn → Kn that corresponds to Tψ ∈Mn×n(K).
Show that ψ is isomorphism ⇔ Tψ is invertible.

Remark

Consider ψ : Kn → Km that corresponds to matrix Tψ = A = (αji). Then,

ker(ψ) = {v ∈ Kn | ψ(v) = 0} =



x1
...

xn

 ∈ Kn

∣∣∣∣∣∣∣∣∣ A ·

x1
...

xn

 = 0


= null space ofA

im(ψ) = {w ∈ Km | w = ψ(v) for some v} =



y1
...

yn

 = A ·


x1
...

xn

 for some {x1, . . . , xn}


= range ofA

Recall

Relating the this with a previous dimensional equality:

dimK Kn = n

= dimK(im(ψ)) + dimK(ker(ψ))

= rank ofA+ nullity ofA

7.3 Determinant

Determinant is simply a function D : Mn×n(K)→ K

Definition 7.1 (Multilinearity and Alternating)

A function f : Mn×n(K)→ K is called multilinear if the following holds:
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Given A =


r1
...

rn

 where row ri = (ai1 ai2 . . . ain),

f



r1
...

αri + βr′i
...

rn


= αf



r1
...

ri
...

rn


+ βf



r1
...

r′i
...

rn


where α, β ∈ K

f is alternating if the following holds:

1. f


r1
...

rn

 = 0 whenever ∃ ri = rj , i ̸= j

2. f



r1
...

ri

ri+1

...

rn


= −f



r1
...

ri+1

ri
...

rn



Remark

If 2 ̸= 0 in K then the second condition for alternating implies the first one.

Definition 7.2 (Determinant)

A determinant function Mn×n(K) is a multilinear and alternating function D : Mn×n(K) → K
s.t. D(In) = 1

Remark

For each n there is a unique determinant function Mn×n(K), usually written as det. To be discussed
further next lecture.
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Lecture 8

Determinant

20 Apr 2023

Motivation

The motivation for representing matrices in such a manner now becomes clearer for us. Let ψ1 : Kl →
Kn, ψ2 : Kn → Km be linear transformations with corresponding T1 ∈Mn×l(K), T2 ∈Mm×n(K):

Kl ψ1,T1−−−→ Kn ψ2,T2−−−→ Km

then it is also an exercise to show that ψ2 ◦ ψ1 is also a linear transformation, that corresponds to
T2 · T1 ∈Mm×l(K).
Matrix multiplication is therefore built in such a way that T2 · T1 results in an m× l matrix. It makes
sense to multiply in such a way to fit the shape requirements: i−th row by j−th column.

Recall

D : Mn(K) → K is a function that is multilinear, alternating and satisfies: D(In) = 1. As of now, we
don’t know if this function exists at all!

Remark

Assuming that D is multilinear, then the first condition for alternating implies the second. When 2 ̸= 0,
the second condition imlpies the first one.

Proof (Remark)

⇒ We want to show that

D


r1
...

rn

 = 0 whenever ∃ i ̸= j : ri = rj ⇒ D



...

ri

ri+1

...

 = −D



...

ri+1

ri
...


We have:

LHS = D



...

ri

ri+1

...

+ 0 = D



...

ri

ri+1

...

+D



...

ri+1

ri+1

...



= D



...

ri + ri+1

ri+1

...


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Similarly,

RHS = −D



...

ri + ri+1

ri
...


Thus,

LHS −RHS = D



...

ri + ri+1

ri+1

...

+D



...

ri + ri+1

ri
...

 = D



...

ri + ri+1

ri + ri+1

...

 = 0

⇐ The proof backward is similar, only with the requirement that 2 ̸= 0 in K.

Proposition 8.1

∀ n, ∃ ! such a functionD.

Proof (Proposition)

If n = 1, D : K1 → K, since D must be multilinear (in this case, simply linear):

D(α) = D(α · 1) = α ·D(1) = α

It is trivial that this D satisfies all conditions (2nd condition is satisfied as there are no 2 rows to swap)
and is indeed unique.
If n = 2:

D

a b

c d

 = D

a 0

c d

+

0 b

c d


= aD

1 0

c d

+ bD

0 1

c d


= a

D
1 0

c d

− cD
1 0

1 0


+ b

D
0 1

c d

− dD
0 1

0 1


= aD

1 0

0 d

+ bD

0 1

c 0


= adD

1 0

0 1

+ bcD

0 1

1 0


= adD(I2)− bcD(I2)

= ad− bc
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Lecture 9

The Uniqueness of the Determinant

25 Apr 2023

Goal

For all n, there exists a unique function det : Mn(K)→ K

9.1 Uniqueness of Determinant Function

Proposition 9.1

If a determinant function D : Mn(K)→ K exists then it is unique

Proof (Proposition)

We first prove the proposition for n = 3. Suppose

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


Then, if a determinant function D exists,

D(A) = a11D


1 0 0

a21 a22 a23

a31 a32 a33

+ a12D


0 1 0

a21 a22 a23

a31 a32 a33

+ a13D


0 0 1

a21 a22 a23

a31 a32 a33


Now, observe that

D


1 0 0

a21 a22 a23

a31 a32 a33

 = a21D


1 0 0

1 0 0

a31 a32 a33

+D


1 0 0

0 a22 a23

a31 a32 a33


due to the linearity of the second row.

Moreover, a21D


1 0 0

1 0 0

a31 a32 a33

 = 0 since rows 1 and 2 are equal. Therefore,

D


1 0 0

a21 a22 a23

a31 a32 a33

 = D


1 0 0

0 a22 a23

a31 a32 a33


Consequently,

D


1 0 0

a21 a22 a23

a31 a32 a33

 = D


1 0 0

0 a22 a23

a31 a32 a33

 = D


1 0 0

0 a22 a23

0 a32 a33


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for similar reasons. It follows that we can write D(A):

D(A) = a11D


1 0 0

0 a22 a23

0 a32 a33

+ a12D


0 1 0

a21 0 a23

a31 0 a33

+ a13D


0 0 1

a21 a22 0

a31 a32 0



= a11

a22D

1 0 0

0 1 0

0 a32 a33

+ a23D


1 0 0

0 0 1

0 a32 a33


+ · · ·

= a11a22a33D


1 0 0

0 1 0

0 0 1

+ a11a23a32D


1 0 0

0 0 1

0 1 0

+ · · ·

Note that every D(I ′) in the last expression evaluates to ±1, since every I ′ is some row-swapping of the
identity matrix, making D(I ′) = ±D(I) = ±1. It naturally follows that D is unique for n = 3. Though
a tedious procedure, we can carry out the same simplifying steps for all other values of n - therefore
we can conclude that if D exists in the first place (if not, we can’t even evaluate the last steps), then it
must be unique.

In the next section, we shall inductively construct a determinant function to prove its existence.

9.2 Inductive Construction of Determinant Function

Proposition 9.2

Suppose ∀ m ≤ n − 1,detm : Mm(K) → K exists (and is therefore unique). Then a construction of
detn : Mn(K)→ K is:

det
n
(A) = a11 det

n−1
(A11)− a12 det

n−1
(A12) + · · ·+ (−1)n+1a1n det

n−1
(A1n) =

n∑
j=1

(−1)1+ja1j det
n−1

(A1j)

where Aij ∈ Mn−1(K) in this case has a meaning that is different from normal usage, being matrix A
with its i−th row and j−th column removed.

Proof (Proposition)

It suffices for us to show that above-constructed detn is a determinant function, i.e. multilinear and
alternating.
Step 1: Multilinearity

Denote det = detn. Let A =



α1

...

cαi + dα′
i

...

αn


, B =



α1

...

αi
...

αn


, B′ =



α1

...

α′
i

...

αn


, where αi are row vectors.

We want to show
detA = cdetB + ddetB′

If i ̸= 1, the coefficients of the detn−1 terms in all 3 expansions are the same (a1j). Furthermore, since
detn−1 is multilinear,

det
n−1

(A1j) = c det
n−1

(B1j) + d det
n−1

(B′
1j)

If i = 1, the detn−1 terms are all equal, while the coefficients adhere to the multilinearity (row vectors
A1 = cB1 + dB′

1). From these 2 cases, it is clear that det is multilinear.
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Step 2: Alternating
We want to show that if the i-th row is the same as the (i+1)-th row, then det(A) = 0.
We first consider the harder case i = 1. Let A be as follows

A =


a11 a12 · · · a1n

a21 = a11 a22 = a12 · · · a2n = a1n
...

...
. . .

...

an1 an2 · · · ann


Define Tij as matrix A with rows 1 and 2, columns i, j removed (clearly, Tij = Tji). We recall that

detA = a11 det
n−1

(A11)− a12 det
n−1

(A12) + · · ·

Expanding each component,

det
n−1

(A11) = a22 det
n−2

(T12)− a23 det
n−2

(T13) + · · ·

= a12 det
n−2

(T12)− a13 det
n−2

(T13) + · · ·

det
n−1

(A12) = a21 det
n−2

(T21)− a23 det
n−2

(T23) + · · ·

= a11 det
n−2

(T21)− a13 det
n−2

(T23) + · · ·

· · ·
det
n−1

(A1m) = ±a21 det
n−2

(Tm1)± a22 det
n−2

(Tm2)± · · · ± a2n det
n−2

(Tmn)

= ±a11 det
n−2

(Tm1)± a12 det
n−2

(Tm2)± · · · ± a1n det
n−2

(Tmn) (without a1m term)

As a high-level explanation, to calculate detn−1(A1m), we have already removed the first row and m-th
column. Therefore, the coefficients are going to be from the second row (which, in this case, is the same
as the first row), and we have to remove one more column other than the m-th (which is why there’s no
a1m term). It is a good reminder that in each expression, the signs alternate. Combining these steps
into the original expression:

det
n
(A) = a11 det

n−1
(A11)− a12 det

n−1
(A12) + · · ·

= a11(a12 det
n−2

(T12)− a13 det
n−2

(T13) + · · · ) + · · ·

In this expansion, the term a1ia1j detn−2(Tij) appear twice with opposite signs, making detA = 0.
The easier case is when i ̸= 1. Since the i-th and (i+1)-th rows are both included in the matrix onto
which detn−1 is applied, and since detn−1 is alternating, it follows that all detn−1 terms are 0 in the
expansion, resulting in detA = 0. det is therefore also alternating.
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Lecture 10

Properties of the Determinant

27 Apr 2023

Recall

The determinant function D : Mn(K)→ K is unique and is defined by:

D(A) =

n∑
j=1

(−1)j+1a1j det
n−1

(A1j)

Proposition 10.1

The proof previously sketched shows that if F : Mn(K)→ K is a multilinear, alternating map then

F (A) = det
n
(A)F (In)

In particular, if F (In) = 1 then F (A) = det(A). It is quite clear why F (In) should appear at the final
expression, as according to what we did to prove uniqueness from existence of the determinant function,
the final expression involves the determinant function applied to row permutations of In, the value of
which evaluates to ±F (In) due to the alternating nature of the function.

Definition 10.1 (Row-varying Determinant Function)

Di(A) :=

n∑
j=1

(−1)i+jaij det
n−1

(Aij)

Then Di : Mn(K)→ K is also multilinear and alternating, and Di(A) = detA

10.1 Multiplicativity of Determinant

Let B ∈Mn(K) be any matrix. Consider:

H : Mn(K)→ K
A→ det(A ·B)

Claim 10.1

H is multilinear and alternating. In order to prove this, we shall introduce some notations:

• If S ∈Mm×n(K) then ST ∈Mn×m(K), STij := Sji. This is the transpose matrix.

• If v = (v1, v2, . . . , vn) ∈M1×n(K), vT =


v1
...

vn

 ∈Mn×1(K)

• If w, v ∈M1×n(K), we define the dot product of v, w as

v · w = vwT =

n∑
i=1

viwi

Proof (Claim)

Multilinearity
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Write A =


α1

...

αn

 , B =


wT1
...

wTn

 where each αi are row vectors of A, wi are column vectors of B. Then,

A ·B =


α1w

T
1 α1w

T
2 · · · α1w

T
n

α2w
T
1 α2w

T
2 · · · α2w

T
n

...
...

. . .
...

αnw
T
1 αnw

T
2 · · · αnw

T
n



If A =



α1

...

αi + cα′
i

...

αn


, A1 =



α1

...

αi
...

αn


, A2 =



α1

...

α′
i

...

αn


then we want to show H(A) = H(A1) + cH(A2)

H(A) = det(AB) = det


α1w

T
1 α1w

T
2 · · · α1w

T
n

...
...

. . .
...

(αi + cα′
i)w

T
1 (αi + cα′

i)w
T
2 · · · (αi + cα′

i)w
T
n

αnw
T
1 αnw

T
2 · · · αnw

T
n


= det(A1B) + cdet(A2B)

= H(A1) + cH(A2)

Proof that H is alternating is left as an exercise.

Corollary 10.1

H(A) = det(A)H(In) (since H is multilinear, alternating)

⇒ det(AB) = detA detB

⇒ det(AB) = detA detB = det(BA)

Corollary 10.2

If A has either a left or right inverse, then detA ̸= 0 in K.

Proof (Corollary)

Suppose ∃ A′ s.t. AA′ = In ⇒ 1 = det(In) = detA detA′ ⇒ detA ̸= 0

Proposition 10.2

Given A ∈Mn(K) then
detA = detAT

Proof (Proposition)

Suppose this is true up to n− 1. Then,

detA =

n∑
1

(−1)1+ja1j det
n−1

(A1j)
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Consider Dvert : Mn(K)→ K, where

Dvert(B) =

n∑
i=1

(−1)1+ibi1 det
n−1

(Bi1)

We claim that Dvert is multilinear and alternating, and Dvert(In) = 1, which would therefore imply
that Dvert = det. This is trivial.
So,

det(AT ) = Dvert(A
T )

=

n∑
i=1

(−1)1+iaTi1 det
n−1

(ATi1)

=

n∑
i=1

(−1)1+ia1i det
n−1

((A1i)
T )

=

n∑
i=1

(−1)i+1a1i det
n−1

(A1i)

=

n∑
j=1

(−1)j+1a1j det
n−1

(A1j)

= detA

Definition 10.2 (Adjunct Matrix?)

Let A ∈Mn(K). Define

A′ =


(−1)2 detA11 (−1)3 detA12 · · · (−1)1+n detAn1

...
... (−1)i+j detAij

...

(−1)n+1 detAn1 · · · · · · (−1)2n detAnn


Then the adjunct matrix of A is (A′)T

Claim 10.2

A(A′)T = (A′)TA = detAIn

We will prove this in the next lecture, with the upshot being that if detA ̸= 0 then

A((detA)−1(A′)T ) = In ⇒ A−1 = (detA)−1(A′)T

We can therefore use this formula to find the inverse of A!

Corollary 10.3

A is invertible iff detA ̸= 0

Proof (Corollary)

⇒ As proven above in Corollary 10.2
⇐ The above claim provides a constructive way of finding the inverse of A through detA.
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Lecture 11

Spectral Theory: Eigenvalues, Eigenvectors, Eigenspaces

02 May 2023 (Zoom)

Recall

We claimed last lecture that
A(A′)T = (A′)TA = (detA)In

Proof (Claim)

First recall that

A′
ij = (−1)i+j det(Aij)

⇒ (A′T )ij = Aji = (−1)i+j det(Aji)

Let

P = A(A′)T

=


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann




det(A11) · · · (−1)n+1 det(An1)

(−1) det(A12) · · ·
...

· · · (A′T )kj = (−1)j+k det(Ajk)
...

(−1)n+1 det(A1n) · · · (−1)2n det(Ann)


then Pii =

∑n
j=1 aij(A

′T )ji =
∑n
j=1 aij(−1)i+j det(Aij) = detA, so indeed the diagonal entries are

detA. It remains for us to prove that Pij = 0 for i ̸= j.

Pij =

n∑
k=1

aik(−1)j+k detAjk

We will change A a little bit by replacing its j−th row with its i−th row, and denote this matrix B.
We know that detB = 0 (having 2 equal rows), and can write its expression:

detB =

n∑
k=1

(−1)i+kaik detBik

and we can see that
detBik = (−1)i+j detAjk

(LHS has i−th row removed, but the j−th row is just the former i−th row, while RHS has the original
j−th row removed. The sign change is to compensate for the alternating nature.)
Therefore,

0 = detB =

n∑
k=1

(−1)i+kaik detBik

=

n∑
k=1

(−1)i+j+i+kaik detAjk

=

n∑
k=1

(−1)j+kaik detAjk

= Pij
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Just a note, that this entire maneuver could have only been accomplished if i ̸= j, with the row-changing
in the first step.

11.1 Spectral Theory

Motivation

Spectral theory is the study of eigenvalues and eigenvectors.
Let T : V → V be a linear transformation over K, otherwise known as a linear operator since it
acts V → V . We know that if we pick a basis B = {e1, e2, . . . , en} then T corresponds to some matrix
[T ]B ∈ Mn(K). Then the question arises: does there exist a basis such that [T ]B is “simple”, whatever
that measure of “simple” is: maybe it can have lots of zeroes, triangular etc. However, for this case, we
opt to ask if there exists a basis such that [T ]B is diagonal.

Remark

Why are diagonal matrices good? Well, matrix multiplication is much easier to perform on diagonal
matrices!

If A =


α1 0 · · ·

0 α2 · · ·
...

. . . 0

· · · 0 αn

 , v =


v1

v2
...

vn

 then Av =


α1v1

α2v2
...

αnvn

, in particular:

A


1

0
...

0

 =


α1

0
...

0

 = α1


1

0
...

0


so A is sending a vector to a multiple of itself!

Definition 11.1 (Eigenvalue, Eigenvector)

Let T : V → V be a linear operator over K, V is finite dimensional. Then

1. a ∈ K is called an eigenvalue of T if ∃ v ̸= 0 ∈ V s.t.

T · v = a · v

2. If a is eigenvalue of T , then a vector v s.t.

Tv = av

is called an eigenvector of T for the eigenvalue a.

Example2

1

 has eigenvalue 2, 1; with

x
0

 being an eigenvector of eigenvalue 2,

0

y

 being an eigenvector

of eigenvalue 1.1

1

 has eigenvalue 1, and since id · v = v = 1 · v ∀ v ∈ K2, every v ∈ K2 is an eigenvector of

eigenvalue 1.
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Therefore, if B = {e1, e2, . . . , en} is a basis of V , and [T ]B =


c1

c2
. . .

cn

 then c1, c2, . . . , cn are

eigenvalues and each ei is an eigenvector of ci (Its coordinates would be all zeroes, except for the i−th
position, which would be multiplied by ci)

Definition 11.2 (Eigenspace)

If a is an eigenvalue of T , define
Va := {v ∈ V | T (v) = a · v}

to be the eigenspace of the eigenvalue a.

Claim 11.1

Va is a vector subspace of T , the proof of which is left as exercise.

Example

If T : K2 → K2, [T ]B =

2

1

 then

V2 = {(x, 0) | x ∈ K}
V1 = {(0, y) | y ∈ K}

Then a natural question arises, that given T : V → V , how do we find its eigenvalues and eigenvectors?

Proposition 11.1

Let T : V → V be a linear operator over K, then the following are equivalent:

1. a ∈ K is an eigenvalue for T

2. T − a · id : V → V is not an isomorphism

3. There exists a basis B = {e1, e2, . . . , en} for V s.t. M = [T ]B satisfies det(M − a · In) = 0

Remark

In (3), the term det(M − aIn) is independent of basis, i.e. if we have a different basis B′ then

det(M ′ − aIn) = det(M − aIn) = 0

This is because M = CM ′C−1 through change of basis, which implies

M − aIn = C(M ′ − aIn)C−1

⇒ det(M − aIn) = detC det(M ′ − aIn) detC−1

= det(M ′ − aIn)

Proof (Proposition)

We first prove (1)⇒ (2). If a ∈ K is an eigenvalue for T ⇒ There exists eigenvector v for a.
Therefore, T − aIn is not an isomorphism since ∃ v ̸= 0 s.t. (T − aIn)(v) = 0.
In fact, Va = {v | Tv = av = aInv ⇔ (T − aIn)v = 0} = ker(T − aIn)
We now prove (2) ⇒ (1). We know that T − aIn is not an isomorphism, and is either not injective or
not surjective.
If it is not injective, then ker(T − aIn) ̸= {0}.
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If it is not surjective, then dim im(T − aIn) < dimV , and since

dimker(T − aIn) + dim im(T − aIn) = dimV ⇒ dimker(T − aIn) > 0⇒ ker(T − aIn) ̸= {0}

In either case, ker(T − aIn) ̸= {0} ⇒ ∃ v ̸= 0 s.t. T (v) = aInv = av.
We now prove (2)⇔ (3).
Let B = {e1, . . . , en} be any basis. Let M = [T ]B, then T − aIn corresponds to M − aIn under B.
Then, T − aIn is (not) an isomorphism ⇔ M − aIn is (not) invertible ⇔ det(M − aIn) = ( ̸=)0

Definition 11.3 (Characteristic Polynomial of Matrix)

Let M ∈Mn(K) the characteristic polynomial of M is

f(x) := det(xIn −M)

Example

M =

a b

c d

 then

f(x) =

∣∣∣∣∣∣x− a −b

−c x− d

∣∣∣∣∣∣
= (x− a)(x− d)− bc
= x2 − (a+ d)x+ (ad− bc)

Definition 11.4 (Chacteristic Polynomial of Linear Operator)

T : V → V is a linear operator over K. Let B = {e1, e2, · · · , en} be any basis. Then the characteristic
polynomial of T is the characteristic polynomial of [T ]B.

Remark

Note, that this is independent of the choice of basis! For the same reason above: that the change of
basis matrices can always be applied and not alter these properties.

Corollary 11.1

Eigenvalues of T are precisely the roots of its characteristic polynomial.

Example

If A = [T ]B =


a1

. . .

an

 then

fT (x) = det(xIn −A)

=

∣∣∣∣∣∣∣∣∣
x− a1

. . .

x− an

∣∣∣∣∣∣∣∣∣
= (x− a1) · · · (x− an)
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Example

If A =

 0 1

−1 0

 on K2 → K2 (K = R,C) then

PA(x) = det

x −1

1 x

 = x2 + 1

Then, if K = R, then there does not exist any solutions, i.e. no eigenvalues for A over R.
However, if K = C, then ±i are eigenvalues for A.
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Lecture 12

Review before Midterm 2

02 May 2023

12.1 Change of Basis

Consider the identity map, that is

V
id−−→ V

B = {v1, v2, . . . , vn} B′ = {v′1, v′2, . . . , v′n}

vi 7→ vi

Note that this is not the map represented by the identity matrix, which would essentially just map the
coordinates to be the same between 2 bases.
The matrix C = [id]B,B′ is the change of basis matrix. Essentially all vectors are kept the same (it’s
an identity mapping!), but just the coordinates are changed (because the basis changed!).
In particular, this mapping would map:

vi 7→ Ci1v
′
1 + Ci2v

′
2 + · · ·Cinv′n

0
...

1
...

0


7→ C



0
...

1
...

0


=



Ci1
...

Cij
...

Cin


Consider the following:

V

V W

W

C ⇔ id
D ⇔ id

T ′

T

C−1

{v1, v2, . . . , vn} {w1, w2, . . . , wm}

{v′1, v′2, . . . , v′n} {w′
1, w

′
2, . . . , w

′
m}

then
T ′ = DTC−1

simply tracing back!
In a specific case,
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V

V V

V

C ⇔ id
C ⇔ id

M ′

M

C−1

{v1, v2, . . . , vn} {v1, v2, . . . , vn}

{v′1, v′2, . . . , v′n} {v′1, v′2, . . . , v′n}

then
M ′ = CMC−1

12.2 Eigenspaces

If α is an eigenvalue of T , Vα := {v | Tv = αv} = ker(T − αIn).

Exercise 12.1

If α ̸= β, Vα ∩ Vβ = {0}
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Lecture 13

Diagonalizable Linear Operators

09 May 2023

Recall

Linear operator T : V → V , then the char poly is det(xIn − T ) = det(xIn − [T ]B), which is consistent
regardless of choice of basis B!
Solutions of the char poly are the eigenvalues of T (or of M = [T ]B).
For each eigenvalue λ of T , there is

Vλ := {v ∈ V | Tv = λv} = ker(T − λIn)

Exercise 13.1

If λ ̸= λ′ then Vλ ∩ Vλ′ = {0}

Definition 13.1 (Diagonalizable)

Let T : V → V be a linear operator. T is diagonalizable if there exists a basis B = {e1, e2, . . . , en} of V
s.t. [T ]B is a diagonal matrix, i.e. each ei is an eigenvector of T .

If [T ]B =


c1

. . .

cn

, it sends Tei = ciei ⇒ ei is an eigenvector of eigenvalue ci

Proposition 13.1

Let T : V → V be a linear operator with dimV = d. TFAE (The Following Are Equivalent):

1. T is diagonalizable

2. PT (x) = (x − λ1)d1(x − λ2)d2 . . . (x − λn)dn where λi ̸= λj if i ̸= j and di = dimVλi
(the power

has to match the dimension of the eigenspace!)

3. Let {λi}i=1,...,l be distinct eigenvalues of T , then dimV =
∑

dimVλi

Example

T =

1 1

0 1

, then PT (x) = (x− 1)2 ⇒ λ1 = 1

V1 =


x
y

 ∈ V
∣∣∣∣∣∣
1 1

0 1

x
y

 =

x
y

 =


x
y

 ∈ V
∣∣∣∣∣∣
x+ y

y

 =

x
y


This implies y = 0 ⇒


1

0

 forms a basis for V1 ⇒ dimV1 = 1 ̸= 2 (the power of (x − 1)2). T is

therefore NOT diagonalizable.

Proof (Proposition)

(1)⇒ (2)
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Let d = dimV . Let B = {e1, e2, . . . , ed} be the basis s.t. [T ]B is diagonal:

[T ]B =


c1

. . .

cd


then the characteristic polynomial is

(x− c1)(x− c2) . . . (x− cd) =
∏
λi

(x− λi)di

and dimVλi = di (picking out the di vectors in B that correspond to the eigenvalue λi)
(2)⇒ (3)
If (2) holds then

∑
dimVλi

=
∑
di = deg(P (x)) = dimV

(3)⇒ (1)
Given eigenvalues {λi}i=1,2,...,l.
Consider the map π : Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλl

→ V , sending (v1, v2, . . . , vl) 7→ v1 + · · ·+ vl
We claim that ker(π) = {0}, which in combination with dimLHS =

∑
dimVλi = dimV = dimRHS,

implies that π is isomorphic.
Suppose that (w1, w2, . . . , wl) ∈ ker(π). Since it is an element of the direct sum of eigenspaces, Twi =
λiwi and 0 = π(w1, . . . , wl) =

∑
wi

Let w =
∑
wi(= 0) then Tw = λ1w1 + · · ·+ λlwl

Then
0 = Tw − λ1w = (λ2 − λ1)w2 + · · ·+ (λl − λ1)wl

which implies (w′
2 = (λ2 − λ1)w2, . . . , w

′
l = (λl − λ1)wl) ∈ ker(⊕i=2,...,lVλi → V )

Repeating this,
(λl − λ1)(λl − λ2) . . . (λl − λl−1)wl ∈ ker(Vλl

→ V )

But Vλl
is a subspace of V ⇒ ker(Vλl

→ V ) = {0} ⇒ (λl − λ1)(λl − λ2) . . . (λl − λl−1)wl = 0
But λi ̸= λj ⇒ wl = 0⇒ wl−1 = 0⇒ · · · ⇒ w1 = 0
In particular, if l = 2,

Vλ1
⊕ Vλ2

π−→ V

ker(π) = {(w1, w2) | w1 + w2 = 0}
= {(w1,−w1) | w1 ∈ Vλ1 ∩ Vλ2} = {0}

Coming back, if π is indeed an isomorphism, then we can pick out bases from Vλi
to form a basis for V

that are all eigenvectors.

Definition 13.2 (Algebraic and Geometric Multiplicity)

If PT (x) = (x−λ1)d1(x−λ2)d2 . . . (x−λl)dl then di is the algebraic multiplicity of λi, while dimVλi

is the geometric multiplicity of λi. Generally, dimVλi
≤ di

Definition 13.3 (Invariant/Stabilised Subspace)

Let T : V → V be a linear operator. A subspace W ⊆ V is an invariant/stabilised subspace under
T if T (W ) ⊆W , i.e. T (w) ∈W ∀ w ∈W .

Lemma 13.1

Linear operator T : V → V , stabilised subspace W and let v1, v2, . . . , vl be eigenvectors corresponding
to distinct eigenvalues then if v1 + · · ·+ vl ∈W then vi ∈W .

Remark

In particular, if W = {0} then the result from the previous proof follows, i.e. if 0 = π(v1, v2, . . . , vn) =
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v1 + v2 + · · ·+ vn then vi = 0

Proof (Lemma)

We can induct on l. Base case l = 1 is clear.
Suppose the lemma holds for m ≤ l − 1, then we want to show it is true for l.
Let v = v1 + · · ·+ vl ∈W , then

Tv = λ1v1 + λ2v2 + · · ·+ λlvl

λ1v = λ1v1 + λ1v2 + · · ·+ λ1vl

Tv − λ1v = (λ2 − λ1)v2 + · · ·+ (λl − λ1)vl

Since v ∈W ⇒ Tv, λ1v ∈W ⇒ Tv − λ1v ∈W ⇒ RHS ∈W .
The induction hypothesis is true for (l − 1)⇒ v2, . . . , vl ∈W ⇒ v1 ∈W

Corollary 13.1

Suppose T is diagonalizable on V , W ⊆ V be a stabilised subspace under T then

W = ⊕
λi

(W ∩ Vλi
)

Proof (Corollary)

Similar to previous proof, consider
⊕
λi

(W ∩ Vλi
)
π−→W

We want to show that π is surjective. It’s more obvious that π is injective, but for demonstration let
us show surjectivity.
Let w ∈W ⇒ w = v1 + · · ·+ vl, simply viewing w ∈ V , since there exists an eigenbasis {v′1, v′2, . . . , v′l},
and vi has simply absorbed all the coefficients. By Lemma, each vi ∈W ⇒ vi ∈W ∩ Vλi

Corollary 13.2

If T : V → V is diagonalizable on V , and W is a stabilised subspace then T |W is also diagonalizable.
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Lecture 14

Generalized Eigenspaces and Cayley-Hamilton

11 May 2023

We continue from last lecture.

Proposition 14.1

Let T : V → V be a linear operator, and W be a stabilised subspace under T , then T |W is diagonaliz-
able.

Proof (Proposition)

Since T is diagonalizable,
V = ⊕

λ
Vλ

for distinct λ. From previous lecture, we know that

W = ⊕
λ
(W ∩ Vλ)

for distinct λ of T : V → V . It therefore suffices to show that W ∩ Vλ is an eigenspace of T :W →W ,
i.e. Wλ =W ∩ Vλ. However, this is clear from the definition itself:

LHS = {w ∈W | Tw = λw} = RHS

Therefore, W = ⊕
λ
Wλ ⇒ T |W is diagonalizable.

14.1 Simultaneously Diagonalizable Linear Operators

Question

Given linear operators T1, T2 : V → V that are both diagonalizable, then when are they simultaneously
diagonalizable? i.e. when does there exist an eigenbasis that is an eigenbasis for both T1, T2?

Observe that if there exists a common eigenbasis B then

[T1]B =


a1

. . .

an

 , [T2]B =


b1

. . .

bn

⇒ [T1]B[T2]B = [T2]B[T1]B

T1, T2 are commutative!

Proposition 14.2

Let T1, T2 : V → V be diagonalizable linear operators, then they are simultaneously diagonalizable if
and only if T1 ◦ T2 = T2 ◦ T1

Proof (Proposition)

⇒ From our observation above
⇐ First, let V = ⊕

λ
Vλ for λ of T1 : V → V , i.e. Vλ : {v ∈ V | T1v = λv}

We then claim that Vλ is invariant under T2. This would imply that since T2 is diagonalizable, T2 |Vλ

is diagonalizable.
Then each Vλ = ⊕

α
Wλ,α for α of T2 : Vλ → Vλ where Wλ,α = {v ∈ Vλ | T2v = αv}.

It then follows that V = ⊕
λ
Vλ = ⊕

λ
(⊕
α
Wλ,α). Now, since Wλ,α = {v ∈ V | T1v = λv, T2v = αv} then we

are done.
It remains for us to prove the claim, i.e. T2(Vλ) ⊆ Vλ.
If x ∈ Vλ, we want to show that T2(x) ∈ Vλ ⇔ T1(T2(x)) = λ(T2(x)).
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But T1 ◦ T2 = T2 ◦ T1 ⇒ T1(T2(x)) = T2(T1(x)) = T2(λx) = λT2(x)

Observe1 1

0 1

 has eigenvalue 1, but not diagonalizable over R,C, but 1

−1

 is clearly not diagonalizable over R (no eigenvalue), but potentially over C. It was therefore

the fault of the field (in this case, R) that made it not diagonalizable, not fault of the matrix itself.
This prompts us to generate a more general definition of eigenspace.

Definition 14.1 (Generalized Eigenspace)

Let λ be an eigenvalue of T : V → V . Define the generalized eigenspace of T :

Ṽλ := {v ∈ V | (T − λ)m · v = 0 for somem ∈ N}

∀ m ≥ 1, we can define:

V
(m)
λ := {v ∈ V | (T − λ)m · v = 0}

In particular, the typical eigenspace

Vλ = V
(1)
λ

and
V

(1)
λ ⊆ V (2)

λ ⊆ · · · ⊆ V (m)
λ ⊆ Ṽλ =

⋃
m≥1

V
(m)
λ

Example1 1

0 1

 has eigenvalue 1, dimV1 = 1 but dim Ṽ1 = 2, since

(M − I)2 =

0 1

0 0

2

=

0 0

0 0


Lemma 14.1

Suppose the characteristic polynomial of T : V → V has the form:

P (x) =
∏
λi

(x− λi)di

then dim Ṽλi
= di

Lemma 14.2

If the characteristic polynomial has the same form as above, then V ∼= ⊕
λ
Ṽλ.

Proof (Lemma 14.2)

Using the same idea, we want to show

⊕
λ
Ṽλ

π̃−→ V

where π̃ is the standard addition map, is an isomorphism.
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Then we want ker(π̃) = {0}, and
∑

dim Ṽλ = dimV , which would imply isomorphism.
It is also an exercise to prove, during this process, that Ṽλ ∩ Ṽλ′ = 0

Proof (Lemma 14.1)

We inspect the special case when there only exists 1 eigenvalue λ, i.e. P (x) = (x− λ)d.
It is already clear that dim Ṽ1 ≤ d, since Ṽ1 ⊆ V .
However, we want to show dim Ṽ1 = d, i.e. ∀ v ∈ V, (T − λ)mv = 0 for some v.
Equivalently, we claim that (T − λ)dv = 0 ∀ v ∈ V , i.e. (T − λ)d = 0

This claim will be proven by the following theorem, which shall prove the previous 2 lemmas at one go.

Theorem 14.1 (Cayley-Hamilton)

Let T : V → V be a linear operator, and its characteristic polynomial be

P (x) = det(xIn − T )

Then
P (T ) = 0

i.e. if P (x) = a0 + a1x+ a2x
2 + · · ·+ adx

d; ai ∈ K then

a0I + a1T + a2T
2 + · · ·+ adT

d = 0

Remark

This makes the claims above obvious, since P (x) = (x− λ)d ⇒ (T − λ)d = 0

Example

A =

1 1

0 1

⇒ P (X) = (x− 1)2 then according to theorem,

1 1

0 1

− I2
2

= 0

Remark

If P (x) =
∏
λi
(x− λi)di then we can switch around the order

(T − λ1)d1(T − λ2)d2 · · · = (T − λ2)d2(T − λ1)d1 · · · = 0

(we could switch the multiplying order in the polynomial, and thus switch the multiplying order of the
matrices)
Then if (T − λ1)d1(T − λ2)d2v = 0 then it’s relatively easy to conclude that v ∈ Ṽ1 or Ṽ2
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Lecture 15

Proving Cayley-Hamilton

16 May 2023

Goal

To prove Cayley-Hamilton!

Recall

Let T : V → V be a linear operator, and P (x) be the characteristic polynomial of T , then P (T ) = 0

Proof (C-H for Diagonalizable Linear Operator)

We first look at a special case, where T is diagonalizable. Then, choosing the representation of T in the
eigenbasis (it does not matter which basis we choose!):

P (x) = (x− λ1)(x− λ2) · · · (x− λn)
⇒ P (T ) = (T − λ1In)(T − λ2In) · · · (T − λnIn)

=


0

λ2 − λ1
. . .

λn − λ1




λ1 − λ2

0

. . .

λn − λ2

 · · · = 0

Remark

If P (A) = 0 for A ∈Mn(K)⇔ P (CAC−1) = 0
Again, it doesn’t matter which basis we choose!

The following section should be read with a ton of salt, as I could only understand and jot
down the brief ideas, and couldn’t capture every subtlety that Professor Yao introduced
to us.

Proof (Sketch 1, Jordan Canonical Form)

Only works for C, or any algebraically closed field K.
Jordan: If A ∈Mn(C) then ∃ C s.t. A′ = CAC−1 has the form

A′ =



λ1 ∗

λ1 ∗

λ1 ∗

λ1

λ2 ∗

λ2

λl ∗

λl ∗

λl


essentially has entries on the diagonal, and 1 off the diagonal, sectioned off into different “squares”
with the same eigenvalue on the diagonal within each “square”. Then we can show that eventually the
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off-diagonal entries will die off after some steps.

Proof (Sketch 2, Abstractifying)

A wrong approach one might have tried is as follows:

P (X) = det(xIn −A)
⇒ P (A) = det(A−A) = 0

This is clearly wrong, since x in this case is a scalar, and can’t just be replaced by a matrix A. But
what if...?

Definition 15.1 (Commutative Ring)

(R,+, ·) is a commutative ring if

1. (R,+) is an Abelian group

2. · is associative , ∃ 1 ∈ R

3. (a+ b) · c = (a · c) + (b · c)

4. ab = ba

and we assume that 1 ̸= 0.
i.e. A commutative ring is simply a field, without the multiplicative inverse requirement.

Definition 15.2 (Module over commutative ring)

A module over a commutative ring is similar to a vector space over a field, i.e. with the same
requirements and properties.
A module M over R is finitely generated(?) if there exists a surjection Rd ↠M .

Let us now consider the polynomials over a field K:

K[x] :=

{
d∑
i=0

aix
i | ai ∈ K

}

then K[x] is actually a commutative ring, with addition and multiplication well-defined. Of course, we
can’t (and it is not required of us to) enforce the multiplicative inverse requirement. In this case, x is
an indeterminant.
Switching perspective, let’s look at linear operators. Let T : V → V , and consider

ΣT = “K[T ]”

a “polynomials with entries T (formerly x), with coefficients in K” of sorts.
Intuitively, each element in

∑
T is a linear operator (scaled powers of T are also linear operators, just

applied repeatedly and scaled), i.e.
K[T ] ⊆ HomK(V, V )

In particular, since
∑
T = “K[T ]” is a commutative ring, we can consider matrices with entries in this

ring. Consider
Mn×n (ΣT ) := {(αij) | αij ∈ ΣT }

then this has considerably enlarged what we can put into matrices.
Let’s draw a parallel between P (x) and P (T ). Fix B = {v1, v2, . . . , vn} to be a basis of V , and let
A = [T ]B = (aij).
Then first, since we know P (x) = det(xIn − A) (again, does not matter which basis we take!), let us
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actually take the determinant of (xIn −A)T , for purposes that will make sense later:

P (x) = det


x− a11 −a21 · · · −an1
−a12 x− a22 · · · −an2
...

...
. . .

...

−a1n −a2n · · · x− ann


where the matrix inside the determinant function ∈Mn(K), then similarly

P (T ) = det


T − a11I −a21I · · · −an1I

−a12I T − a22I · · · −an2I
...

...
. . .

...

−a1nI −a2nI · · · T − annI


where the matrix inside the determinant function B ∈Mn(

∑
T )

Keep in mind that P (T ) = detB ∈
∑
T are linear operators, therefore we now need to prove that it is

the zero mapping. To do that, we shall show that it sends vi in the basis to 0, i.e.

(detB)vi = 0 ∀ i

Equivalently, 
detB

. . .

detB



v1
...

vn

 = 0

but we know that 
detB

. . .

detB

 = (detB)In ∈Mn(ΣT )

and recall that we proved
(M ′)TM = (detM)In

for M ∈Mn(K), so we can also use that here when B ∈Mn(ΣT ), i.e.

(B′)TB = (detB)In

Therefore, we want to show that (B′)TB sends


v1
...

vn

 to 0. Then,

B


v1
...

vn

 =


T − a11I −a21I · · · −an1I

−a12I T − a22I · · · −an2I
...

...
. . .

...

−a1nI −a2nI · · · T − annI



v1
...

vn


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The entry on the first row would be:

(T − a11I)v1 − a21Iv2 − · · ·
= Tv1 − (a11v1 + a21v2 + · · · )
= 0

by sheer definition of A = [T ]B. And this argument works for all rows!

Remark

It should be noted that the last step clarifies why we took the determinant of the transpose matrix in
the first place: simply to make the final computations easier. If we did not, then we would have had to
show computations with (B′)T , and that’s not nice.

Proof (Sketch 3, Analysis)

We can perturb A slightly by introducing δij to diagonal entries Ajj to form a sequence of perturbed
matrices Ai that are very close to A. By magic, we can show that

P (A) = lim
i→∞

Pi(Ai) ∈Mn(C)

The proof of which uses some “norm” on Mn(C) ∼= Cn
2

to show the convergence.
And note that each Pi(Ai) = 0⇒ P (A) = 0

Proof (Sketch 4, General Matrices)

My apologies in advance for butchering the arguments, hopefully one day I’ll be able to get this in its
full glory.
Consider field L := K[xij ]i,j≤n then the a super general matrix would be

Agen =


x11 · · · x1n
...

. . .
...

xn1 · · · xnn

 ∈Mn(L)

We then plug in all possible roots of L (L̄, the algebraic closure of L).
Then

P (A) = det(xIn −A)
= P (x) = (x− λ1) · · · (x− λn) ∈Mn(L)

And we have λ1, · · · , λn all distinct since P ′(x) ̸= 0⇒ P (Agen = 0)

Remark

Understanding Z:
For a long long time no one really understood Z, but it shall be understood as

{(a, b)|a, b ∈ N, b ̸= 0}

equipped with a notion of equivalence ∼ defined as:

(a, b) ∼ (c, d)⇔ a+ d = b+ c⇔ “a− b = c− d”

Then the pair of natural numbers (a, b) shall represent “a− b” in the common sense.
It is mindblowing to observe that we intuitively understand this type of construction for the positive
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rationals Q+, just equipped with a slightly different notion of equivalence, namely:

(a, b) ∼ (c, d)⇔ ad = bc⇔ “
a

b
=
c

d
”

but ancient mathematicians failed to realize the similar construction for the integers.
Also, a lot of number systems (Roman, Chinese) did not have the symbol for “0” too, indicating that
they might not have fully grasped what its meaning is, not even mentioning the negative numbers.
Somehow it got here when we were trying to turn Z into a field, but it was cool. Fun class!
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Lecture 16

Inner Product and Normed Spaces

18 May 2023

16.1 Motivating Examples on Inner Product and Norm

Remark

For the scope of this lecture, we shall restrict our field K to either R or C (I’ll denote R/C), which are
called “normed” fields, that are roughly fields in which we can make sense of the notion of distance.

Example

On R, α ∈ R⇝ |α|
On C, β = a+ bi ∈ C⇝ |β| = |β · β| 12 =

√
a2 + b2

Let V be a vector space over R/C, then we now want to talk about “distancne” in V

Example

If V = Rd. Let

x = (x1, x2, . . . , xd) ∈ Rd

y = (y1, y2, . . . , yd) ∈ Rd

Then the “dot product” is defined over Rd as follows:

⟨x, y⟩ = x · yT =
∑

xiyi ∈ R

Then ⟨x, x⟩ =
∑
x2i and ∥x∥ :=

√
⟨x, x⟩ is the distance to origin.

Example

If V = Cd. Let

x = (x1, x2, . . . , xd) ∈ Cd

y = (y1, y2, . . . , yd) ∈ Cd

Then the “dot product” is defined over Cd as follows:

⟨x, y⟩ = x · y =
∑

xiyi ∈ C

Then ∥x∥ :=
√
⟨x, x⟩ =

√
xx, which obviously also applies to R.

If x = (x1, x2) ∈ C2 then ∥x∥ =
√
x1x1 + x2x2 =

√
|x1|2 + |x2|2

16.2 Inner Product Space

Definition 16.1 (Inner Product Space)

An inner product space is a vector space V over R/C, together with an “inner product mapping”:

⟨, ⟩ : V × V → K(= R/C) s.t.

1. ⟨x, y⟩ = ⟨y, x⟩ (over R, this is simply an equality without the conjugate)

2. ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩

3. ⟨x, x⟩ ≥ 0 ∀ x ∈ V and
⟨x, x⟩ = 0⇔ x = 0
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This non-negative requirement strengthens our understanding of this as a notion of “distance”!

If (V, ⟨, ⟩) is an inner product space as such, we can write

∥x∥ :=
√
⟨x, x⟩

Observe

⟨x, y⟩ is linear with respect to the first component, and is “conjugate linear” with respect to the second
component. While the first part is clue from property (2), the second part can be shown as follows:

⟨x, βy + z⟩ = β⟨y, x⟩+ ⟨z, x⟩

= β⟨y, x⟩+ ⟨z, x⟩
= β⟨x, y⟩+ ⟨x, z⟩

Lemma 16.1 (Cauchy-Schwarz)

Let (V, ⟨, ⟩) be an inner product space. Then ∀ x, y ∈ V ,

|⟨x, y⟩| ≤ ∥x∥∥y∥

Proof (Lemma)

We shall prove it for the case K = R; when K = C the proof is very similar.
Observe than if y = 0⇒ ⟨x, y⟩ = 0, ∥y∥ = 0, this case is trivial.
Therefore let’s assume that y ̸= 0.
Consider

0 ≤ ⟨x− ty, x− ty⟩ for some t ∈ R
= ⟨x, x− ty⟩ − ⟨ty, x− ty⟩
= ⟨x, x⟩ − ⟨x, ty⟩ − ⟨ty, x⟩+ ⟨ty, ty⟩
= ∥x∥2 − 2t⟨x, y⟩+ t2∥y∥2(⟨x, y⟩ = ⟨y, x⟩ over R)

Therefore,
∥x∥2 + t2∥y∥2 ≥ 2t⟨x, y⟩

In particular, we can choose a convenient value for t = ⟨x,y⟩
∥y∥2 , then:

∥x∥2 + |⟨x, y⟩|
2

∥y∥2
≥ 2|⟨x, y⟩|2

∥y∥2

⇒ ∥x∥2∥y∥2 ≥ |⟨x, y⟩|2

⇒ ∥x∥∥y∥ ≥ |⟨x, y⟩|

Corollary 16.1 (Triangle Inequality)

If x, y ∈ V where (V, ⟨, ⟩) is an inner product space over R/C then

∥x+ y∥ ≤ ∥x∥+ ∥y∥

Also,
∥x− y∥ ≤ ∥x∥+ ∥y∥
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Proof (Corollary)

WTS:
∥x+ y∥ ≤ ∥x∥+ ∥y∥ ⇔ ⟨x+ y, x+ y⟩ ≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥

The equivalence is possible since both sides are non-negative. Expanding:

LHS = ∥x∥2 + ∥y∥2 + ⟨x, y⟩+ ⟨y, x⟩

We know from Cauchy-Schwarz that ∥x∥∥y∥ ≥ |⟨x, y⟩|, and therefore WTS that

⟨x, y⟩+ ⟨y, x⟩ ≤ 2|⟨x, y⟩|

But this is borderline obvious, let ⟨x, y⟩ = m = a+ bi then :

m+m = 2a ≤ 2
√
a2 + b2 = 2|⟨x, y⟩|

This exploration of the relationship between the norm and inner product gives us a more abstract idea
of the norm!

16.3 Normed Space

Definition 16.2 (Normed Space)

A normed vector space is a vector space V over K = R/C, equipped with a function:

∥·∥ : V → R s.t.

1. ∥x∥ ≥ 0, ∥x∥ = 0⇔ x = 0

2. ∀ α ∈ K, ∥αx∥ = |α|∥x∥

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ ∀ x, y ∈ V

Remark

It is clear from our exploration above, that if (V, ⟨, ⟩) is an inner product space over R/C then we can
build (V, ∥·∥) to be a normed space, by defining

∥x∥ :=
√
⟨x, x⟩

Definition 16.3 (Perpendicular, Orthogonal)

Let (V, ⟨, ⟩) be an inner product space over R/C. Then v, w ∈ V are said to be perpendicular to each
other if

⟨v, w⟩ = 0

and we write
v ⊥ w

In general, if E,F ⊆ V are 2 subspaces, then E ⊥ F if x ⊥ y ∀ x ∈ E, ∀ y ∈ F
Similarly, define x ⊥ E if x ∈ V, x ⊥ w ∀ w ∈ E

Observe

If x ⊥ y then

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
= ∥x∥2 + ∥y∥2
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Pythagoras!

16.4 Orthogonal System of Vectors

Definition 16.4 (Orthogonal System of Vectors)

Let {v1, v2, . . . , vr} be vectors in V , then they are called an orthogonal system of vectors if vi ⊥
vj ∀ i ̸= j

Lemma 16.2

If {vi} is an orthogonal system then

∥
r∑
i=1

αivi∥2 =

r∑
i=1

|αi|2∥vi∥2

where ai ∈ K. The proof of which shall be left as an exercise.

Corollary 16.2

If {vi}, vi ̸= 0 is an orthogonal system then they are linearly independent

Proof (Corollary)

Suppose
∑
αivi = 0⇒ ∥

∑
αivi∥2 = 0⇒

∑
|αi|2∥vi∥2 = 0⇒ |αi| = 0⇒ αi = 0

Definition 16.5 (Orthonormal)

{v1, v2, . . . , vr} is orthonormal if it is orthogonal and ∥vi∥ = 1 ∀ i. It is easy to see that we can always
transform an orthogonal system to an orthonormal system of vectors, simply by dividing each vector
by their norm.

16.5 Orthogonal Projection

E

w

v

x

We want to find w ∈ E s.t. (x− w) ⊥ w

Definition 16.6 (Projection)

Let V be an inner product space, E ⊆ V be a subspace. Define

prE : V → E

to be a projection s.t. ∀ x ∈ V, x− prE(x) ⊥ prE(x)
So far, we do not know if it even exists, and if it does whether it’s unique.
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Lemma 16.3

Let v ∈ V,w ∈ E. Suppose v − w ⊥ w then ∀ x ∈ E, ∥v − w∥ ≤ ∥v − x∥. Essentially, the projection
gives the minimum distance from V → E, and it is unique.

Proof (Lemma)

We first enforce a stronger definition for projection, that is

x− prE(x) ⊥ E

The proof for the general case is similar to this.
We first prove that if there exists w = prE(x) ∈ E, then it is unique.
Write δ := w − x then v − x = (v − w) + (w − x) = (v − w) + δ
But δ = w − x ∈ E. Since v − w ⊥ E ⇒ v − w ⊥ δ. Then,

∥v − x∥2 = ∥(v − w) + δ∥2

= ∥v − w∥2 + ∥δ∥2(⇐ (v − w) ⊥ δ)
≥ ∥v − w∥2

⇒ ∥v − x∥ ≥ ∥v − w∥

Equality holds iff δ = 0⇔ w = x
Let us now prove the existence. We first assume that E has an orthogonal basis B = {e1, e2, . . . , en}.
Then, we can construct

prE(v) :=

m∑
i=1

⟨v, ei⟩
∥ei∥2

ei

and we can check that this construction indeed works!. For example, in the case of 1-dimensional E,

w = prE(v) =
⟨v, e1⟩
∥e1∥2

e1

then

⟨v − w, e1⟩ = ⟨v, e1⟩ − ⟨w, e1⟩

= ⟨v, e1⟩ −
⟨v, e1⟩
∥e1∥2

⟨e1, e1⟩

= ⟨v, e1⟩ − ⟨v, e1⟩ = 0

What remains is to show that E has an orthogonal basis, which can be shown using the Gram-Schmidt
process, that is inductive as follows.
In the base case dim = 1, the basis is trivially orthogonal. When dim = 2, suppose {e1, e2} forms the
basis for E, then let E1 be the subspace spanned by e1. Take prE1

(e2) = w1 ⇒ e′2 := e2 − w1 ⊥ e1 ⇒
{e1, e′2} is an orthogonal system.
The inductive process is then trivial, as we take the projection wn−1 = prEn−1(en)⇒ e′n = en−wn−1 ⊥
En−1 ⇒ {e′1 = e1, e

′
2, e

′
3, · · · , e′n} forms an orthogonal system, since e′n ⊥ e′i ∀ i ≤ n− 1(⇐ e′n ⊥ En−1)

And V is finite-dimensional, so this inductive process will come to a stop.
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